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Chapter 1 

Introduction 

The project entitled "Multiple Scale Analysis of Damage and Texture Evolution in Real Heteroge- 
neous Materials" began in January 1995. A no-cost extension was granted to continue this project 
till December 31, 1998. During the four year period of this grant, substantial progress has been 
made in advancing the state of the art in multiple scale modeling of damage in heterogeneous 
materials. Research has been conducted in a few distinct areas that are delineated below. A list of 
publications, acknowledging this grant is provided in chapter 2. 

I. Voronoi Cell Finite Element Model for Damage in Heterogeneous Microstructures 

(Details in: Chapter 3) 

This work deals with the evolution of damage in microstructures of reinforced ductile-matrix com- 
posites, by particle cracking and splitting. A small deformation Voronoi Cell finite element model 
is developed, in which each element may consist of a matrix phase, an inclusion phase and a crack 
phase. Brittle inclusions may be of arbitrary shapes and sizes, and may be dispersed non-uniformly 
in the matrix. Damage initiation of inclusions is assumed to follow a maximum principal stress 
theory. Complete particle cracking or splitting is assumed at the onset of damage. The model is 
validated by a few comparison studies. Various geometric patterns are studied to test the effective- 
ness of the model, as well as to understand the effect of morphology on damage evolution. Actual 
microstructures from optical micrographs of Al-Si-Mg composite systems are analyzed and com- 
pared with experimentally observed results. Quantitative characterization and statistical analysis 
is conducted to correlate morphological parameters with mechanical response. 

II. Multi-level Computational Model For Multiscale Damage Analysis In Composite 
And Porous Materials 

(Details in: Chapter 4) 

An adaptive multi-level methodology is developed in this work to create a hierarchy of com- 
putational sub-domains with varying resolution for multiple scale problems. It is intended to 
concurrently predict evolution of variables at the structural and microstructural scales, as well 
as to track the incidence and propagation of microstructural damage in composite and porous 



materials. The microstructural analysis is conducted with the Voronoi cell finite element model 
(VCFEM), while a conventional displacement based FEM code executes the macroscopic analysis. 
The model introduces three levels in the computational domain which include macro, macro-micro 
and microscopic analysis. It differentiates between non-critical and critical regions and ranges from 
macroscopic computations using continuum constitutive relations to zooming in at 'hotspots' for 
pure microscopic simulations. Coupling between the scales in regions of periodic microstructure 
is accomplished through asymptotic homogenization. An adaptive process significantly increases 
the efficiency while retaining appropriate level of accuracy for each region. Numerical examples 
are conducted for composite and porous materials with a variety of microscopic architectures to 
demonstrate the potential of the model. 

III. Experimental-Computational Investigation Of Damage Evolution In Discontinu- 
ously Reinforced Aluminum Matrix Composite 

(Details in: Chapter 5) 

This work deals with a combined experimental-computational approach to study the evolution 
of microscopic damage to cause failure in commercial SiC particle reinforced DRA's. Determi- 
nation of aspects of microstructural geometry that are most critical for damage nucleation and 
evolution forms a motivation for this work. An interrupted testing technique is invoked where 
the load is halted in the material instability zone, following necking but prior to fracture. Sample 
microstructures in the severely necked region are microscopically examined in 3D using a serial 
sectioning method. The micrographs are then stacked sequentially on a computer to reconstruct 
3D microstructures. Computer simulated equivalent microstructures with elliptical or ellipsoidal 
particles and cracks are constructed for enhanced efficiency, which are followed by tessellation into 
meshes of 2-D and 3-D Voronoi cells. Various characterization functions of geometric parameters 
are generated and sensitivity analysis is conducted to explore the influence of morphological pa- 
rameters on damage. Micromechanical modeling of 2D micrographs are conducted with Voronoi 
Cell Finite Element Method (VCFEM). Inferences on the initiation and propagation of damage are 
made from the 2D simulations. Finally, the effect of size and characteristic lengths of representative 
material element (RME) on the extent of damage in the model systems is investigated. 

IV. Development of the Voronoi Cell Finite Element Model for Large Deformation 
Crystal Plasticity 

A large deformation Voronoi cell finite element formulation is developed for modeling large elastic- 
plastic deformation in polycrystalline materials. The formulation is based on as assumed stress 
hybrid finite element method which makes independent assumption on stress rate, spin within the 
domain of elements, and displacement or velocity assumptions only on the element boundary. The 
finite element equations are solved with a two level Quasi-Newton iterative solver. The outer loop 
in this iterative algorithm is for displacements, and the inner loop is for stress rates and spin, 
with given boundary displacements. Orders of interpolating polynomials for stress rate and spin 
functions can be varied within each element, independent of the neighbouring element. Assuming 
that slip is the sole cause of plastic deformation an elastic-plastic constitutive model for crystalline 



plasticity is implemented into the finite element algorithm. A two-dimensional crystal model with 
three slip systems is used as an example model of the single crystal that is analysed. The entire 
crystal is modeled with one single element in this model. Both explicit and implicit integration 
procedures of the evolution equations are implemented. Results for elasticity are validated by 
comparison with theoretical solutions and results of displacement based finite element codes. For 
crystal plasticity, problems encountered modeling highly rate dependent materials are noted and 
suggestions to future research to improve them are made. A M.S. thesis has resulted from this 
work. 



Chapter 2 

List of Publications 

2.1 Dissertations/Theses Acknowldeging this Grant 

1. K. Lee, "Adaptive Hierarchical Modeling of Response and Damage in Heterogeneous Materi- 
als", Ph.D. Dissertation, The Ohio State University, Autumn 1998. 

2. M. Li, "Characterization and Modeling of Damage in Metal Matrix Composite Microstruc- 
tures", Ph.D. Dissertation, The Ohio State University, Autumn 1998. 

3. S. Moorthy, "The Voronoi Cell Finite Element Method for Response and Damage Analysis 
of Arbitrary Heterogeneous Media", Ph.D. Dissertation, The Ohio State University, Winter 
1997. 

4. M. Narasa, "Large Deformation Voronoi Cell Finite Element Analysis with Crystalline Plas- 
ticity", M.S. Thesis, The Ohio State University, Winter 1997. 

2.2 Refereed Publications Acknowledging this Grant 

I. Voronoi Cell FEM for Damage in Heterogeneous Microstructures 

1. M. Li, S. Ghosh and 0. Richmond, " An experimental-computational approach to the in- 
vestigation of damage evolution in discontinuously reinforced aluminum matrix composite", 
Acta Materialia, (in press). 

2. S. Moorthy and S. Ghosh, "A Voronoi Cell Finite Element Model for Particle Cracking in 
Composite Materials," Computer Methods in Applied Mechanics and Engineering, Vol. 151, pp 
377-400,1998. 

3. S. Moorthy and S. Ghosh, " Particle Cracking In random MMC's by VCFEM," Intl. Jour. 
Plasticity , Vol. 14, No. 8, p 805-827, 1998. 
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Metal-Matrix Composites," Acta Materialia, Vol. 46, No. 3, pp 965-982, 1998. 



5. S. Moorthy and S. Ghosh, " Damage Modeling in Heterogeneous Materials by the Voronoi 
Cell Finite Element Method," Proceedings of 14th US Army Symposium on Solid Mechanics, 
K.R. Iyer and S-C. Chou eds., Battelle Press, pp 3651-370, 1997. 

II. Multiple Scale Modeling of Heterogeneous Materials Using Asymptotic 
Homogenization and the Voronoi Cell FEM 

6. K. Lee and S. Ghosh, " A multilevel computatonal model for multiscale damage analysis in 
composite and porous materials", International Journal of Solids and Structures, (in review). 

7. K. Lee, S. Moorthy and S. Ghosh, "Multiple scale computational model for damage in 
composite materials," Computer Methods in Applied Mechanics and Engineering, Vol. 172 No. 
1-4, pp. 175-201, 1999. 

8. S. Ghosh, M. Li, S. Moorthy and K-H. Lee, "Microstructural characterization, meso-scale 
modeling and multiple scale analysis of discretely reinforced materials," Materials Science and 
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de lecole nationale des, pp 263-274, 1997. 

III. Methods for Material Characterization &: Analysis 

10. M. Li, S. Ghosh, 0. Richmond, H. Weiland and T.N. Rouns, " Three dimensional char- 
acterization and modeling of particle reinforced MMCs, Part I: Quantitative description of 
microstructural morphology", Materials Science and Engineering A, Vol. A265, pp 153-173, 
1999. 

11. M. Li, S. Ghosh, 0. Richmond, H. Weiland and T.N. Rouns, " Three dimensional char- 
acterization and modeling of particle reinforced MMCs, Part II: Damage characterization", 
Materials Science and Engineering A, (in press). 
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Chapter 3 

Voronoi Cell FEM for Damage in 
Heterogeneous Microstructures 

3.1    Introduction 

The presence of fibers or participates in composite microstructures often have adverse effects on 
their failure properties like fracture toughness, ductility and creep resistance. Important microme- 
chanical phenomena that are responsible for deterring the overall properties include, fracture and 
splitting of reinforcements, matrix failure and inclusion-matrix debonding. Many engineering ma- 
terials exhibit strong non-uniformities in inter-particle/fiber spacings, inclusion shapes, volume 
fractions and arrangements, at the microstructural level. In addition, there are heterogeneities 
at larger length scales which include local regions of clustering and directionality, often related 
to the fabrication process. Failure characteristics of heterogeneous materials are affected by mi- 
crostructural mechanisms that control initiation and evolution of localized damage and cracks. 
These mechanisms are highly sensitive to local parameters, such as reinforcement distribution, 
morphology, size, interfacial strength etc. Experimental studies with MMCs [1] have established 
that particles in regions of clustering or preferential alignment, have a greater propensity towards 
fracture, than those in regions of dilute concentration. SEM micrographs of damaged MMCs show 
that larger particles tend to fracture at lower macroscopic load levels due to the existence of large 
flaws. Christman et.al. [8] have shown that local plastic flow is very sensitive to shape of reinforce- 
ments. Lack of reliability of these composite materials have inhibited their applications to high 
performance load carrying engineering components. It is therefore important to understand dam- 
age mechanisms and fracture process for enhancing the level of utilization of these material systems. 

Within the framework of damage mechanics, micromechanical damage models have been em- 
ployed to predict overall constitutive response by using continuum mechanics principles at the 
microscopic level [3, 4]. While some of these models [3] provide reasonable predictions of overall 
properties for a dilute distribution of damage entities, others [4] attempt to analyze the interaction 
effects between damage entities introduced by morphological characteristics of the microstructure. 
Recently, novel approaches to integrate micromechanical and computational approaches at the mi- 
croscale with phenomenological approaches in the macroscale have also been proposed [5]. While 
many of these methods can model damage in brittle homogeneous materials, far fewer analytical 



models are available for ductile two phase materials. Small scale yielding solutions using asymptotic 
analysis for a single bi-material interface due to Shih & Asaro [6] and Hutchinson et.al. [7] are 
notable exceptions. 

Evolving damage in heterogeneous media with a mixture of ductile and brittle constituents have 
been numerically modeled using Unit Cell methods. These methods assume that the material is 
constituted of periodic repetition of unit cells, identified as representative volume elements (RVE) 
of the microstructure. Displacement based finite element analysis is used to analyze the RVE in 
order to predict the onset and growth of evolving damage. Notable among these are the finite 
element simulations by Needleman [11, 9], Tvergaard [12], Bao [13], Horn [14] , Sugimura et.al. 
[13] and Finot et.al. [15]. In [12, 13, 14, 13], simple microstructures with pre-existing damaged 
heterogeneities are considered. In [15] a finite element mesh which allows for crack growth by ele- 
ment separation is used to simulate microscale particle and matrix cracking. While these models 
provide valuable insights into the microstructural damage processes, the simple morphologies ide- 
alize actual microstructures for many engineering materials. Consideration of simple RVE's bear 
little relationship to the actual stereographic features, and have limited them to the assumption 
that all particles or particle/matrix interfaces are damaged simultaneously. To circumvent these 
deficiencies, Suresh and coworkers [16, 8], McHugh et. al. [17] among others, have made novel 
progresses in computational modeling of discontinuously reinforced materials with random spatial 
dispersion. However, a very high resolution of finite element mesh is required even for undamaged 
heterogeneous media, and enormous computational efforts are required to capture failure by these 
models. 

The microstructure based Voronoi Cell Finite Element Model (VCFEM) developed by Ghosh 
et.al. [34, 35], has shown a significant promise in this regard. It can overcome the large com- 
putational requirements of conventional finite element methods, by combining concepts of hybrid 
finite elements with characteristics of micromechanics. The VCFEM mesh naturally evolves from 
the microstructure by Dirichlet tessellation to generate a network of multi-sided Voronoi polygons. 
Each Voronoi cell represents a basic structural element containing one second phase inclusion at 
most (see [19] for details), and the analysis needs no further discretization leading to drastically 
reduced efforts in generating the microstructural mesh. Additionally, computational efficiency is 
greatly enhanced due to Voronoi cell elements being considerably larger than conventional unit cell 
finite elements, with reduced degrees of freedom. 

The evolution of damage by particle cracking or splitting, in particle reinforced ductile matrix 
microstructures, is analyzed in this work by a Voronoi cell finite element model. No matrix cracking 
is allowed in this work. Each Voronoi cell element may consist of a matrix phase, an inclusion phase 
and a crack phase. The inclusions are brittle, of arbitrary shapes and sizes, and may be dispersed 
non-uniformly in the matrix. Damage initiation is assumed to follow a maximum principal stress 
theory or Rankine criterion. Complete particle cracking or splitting is assumed at the onset of 
damage. Different geometric patterns are studied to test the effectiveness of the model, as well 
as to understand the effect of morphology on damage evolution. Actual microstructures from 
optical micrographs of Al-Si-Mg composite systems are analyzed and compared with experimentally 
observed results. Quantitative charact erization and statistical analysis is conducted to correlate 
morphological parameters with mechanical response. 



3.2    Voronoi Cell FEM with Particle Fracture 

The Voronoi cell finite element model has been developed for undamaged composite and porous 
materials in [34, 35] using the assumed stress hybrid formulation. The formulation is extended 
to accommodate damage evolution in the form of particle cracking or splitting. It is assumed 
that in particle cracking, the crack is completely contained within the inclusion, while for particle 
splitting it's tip extends nominally into the matrix. The crack in a fractured particle is realized as 
an elliptical void with a high aspect ratio (~10 -100), implying a blunt crack. Each Voronoi cell 
element is amenable to change in topology from two constituent phases (matrix and inclusions) in 
undamaged cells, to three phases (matrix, inclusion and crack) in damaged cells. Complete particle 
cracking or splitting is assumed to occur at the very onset of damage, and thus the problem of crack 
propagation within each inclusion is avoided. This assumption is justifiable from the consideration 
that for the multitude of inclusions analyzed, crack propagation in each inclusion would make the 
problem inordinately large. Additionally, experimental observations indicate rapid transition from 
crack initiation to complete cracking/splitting. 

3.2.1    Voronoi cell element formulation for damage 

Consider a typical representative material element (RME) consisting of N undamaged and/or 
damaged particles, that are contained in each of the N Voronoi cell elements as shown in figure 
3.5(a). The assumed stress hybrid formulation in the Voronoi cell finite element method (VCFEM) 
requires independent assumptions of an equilibriated stress field (<r) in the interior of each element 
tie, and compatible displacement fields u on the element boundary dtie, u' on the matrix-inclusion 
interface dtic and u" on the crack boundary dticr. In an incremental formulation for elasto- 
plasticity, the incremental two field (<r — u) hybrid variational formulation introduces an element 
energy functional, 

Hf (A<r, Au) = - /   AB(<r, A<r) dti - f   e : Ac dti + 

f    (a- + Aar) • ne • (u + Au) dti - f    (t + At) • (u + Au) dT 
JdQe JTtrn 

- /    (<rm + Aam -<rc- Aac) ■ nc • (u' + Au') dti 
JdQc 

- f     (<rc + A<rc) • ncr • (u" + Au") dti (3.1) 
JdQcT 

where AB is the increment of complimentary energy density. Variables (<r,u) correspond to values 
at the beginning of an increment, while variables (Aar, Au) are the corresponding increments in a 
load increment or step. Outward normals on dtie, dtic and dtiCT are denoted by ne, nc and ncr 

respectively. Superscripts m, c and cr are associated with the matrix, inclusion and crack phases 
respectively in each Voronoi cell element. The total energy for the entire RME of N Voronoi cells is 
obtained as Ilc = ^=1 Ilf. Setting the first variation of H.f in equation (3.1) with respect to stress 
increments Atr to zero yields the element compatibility as the Euler equation, while setting the 
first variations of nc with respect to the independent boundary displacements Au, Au' and Au" 
to zero, yield the inter-element traction reciprocity or element boundar traction, interface traction 
reciprocity and zero traction on crack boundary respectively. Equilibriated stress increments A<r, 



compatible displacement fields Au, Au' and Au", the stress-strain relationships (f^f- = Ae), 
along with the Euler equations completely define the incremental problem for a heterogeneous 
RME. 

3.2.2    Element assumptions 

Independent assumptions on stress increments A<r are made in the matrix and inclusion phases 
in each element, thus allowing stress discontinuities across the interface. In two-dimensional anal- 
ysis, the Airy's stress function $(x,y) is usually convenient in deriving equilibriated stress fields. 
Components of Atr are expressed in terms of $ as: 

d2* d2* d2$ 
Aa** = -df' Aayy = J^' Aa*« = -fadj (3-2) 

Incorporation of key features of micromechanics in the choice of stress functions significantly en- 
hances computational efficiency. Moorthy and Ghosh [34, 19] have introduced a decomposition of 
the matrix and inclusion stress functions into (a) purely polynomial functions $™0iy, &c

poiy 
an<i 05) 

reciprocal functions $™c, &™c
c and $$%, for elements with matrix, inclusion and crack phases. 

Mathematically, the stress functions for the matrix and inclusion phases are constructed as: 

*m       _       *"i        i     S,m     i    &mc 
^ poly    <     ^rec   <     ^Tec 

™poly   ~t~   ™rec 

(3.3) 

In the above equation, the purely polynomial part of the stress functions $™ ^ account for the far 
field tractions on the element boundary düe and on the interface düc, and are expressed as: 

*r0S = £WA/?™/c (3.4) 
p,g 

where (£, 77) are the scaled local coordinates with origin at the element centroid (xc, yc), and may be 
written as £ = (x-xc)/L , 77 = (y—yc)/L. L is a scaling parameter (= y/max(x - xc) max(y — yc) V (x, y) € d£ 
The use of the local coordinates (f, 77) prevents numerical inaccuracies in $m/° due to high expo- 
nents of (x,y), and thus avoid ill-conditioning of the element stiffness matrices. The reciprocal 
terms *™c, $™£ and *^c facilitate stress concentration near the interface and crack boundary, 
accounting for the shape of the inclusion and crack. They also help satisfy traction reciprocity 
(zero traction for the crack) at the interfaces dtic and dftcr, as well as decay at large distances 
from these interfaces. The matrix reciprocal function $™c is constructed from a transformed radial 
coordinate /, that is generated by either a Schwarz-Christoffel conformal transformation (for ellip- 
tical heterogeneities) [20], or by a Fourier series transformation of the interface düc (for arbitrary 
shapes) [34]. The radial distance / satisfies the conditions /^ooas (x,y) -»■ 00, and / = 1 on 
the interface dQ,c. In the expression for $™c, shape effects are dominant near d0.c and vanish in 
the far-field. 

*?ec = ££VE7^^/^ (3.5) 
P,Q i    J 

At the interface (/ = 1), coefficients A/?™t- in equation (3.5) impart flexibility to the polynomial co- 
efficients Aß™ for matching traction conditions. Finally, the terms $™£ and $?ec are contributions 



to the matrix and inclusion stress functions due to the crack. 

Aßmc 
*™ = YevqT( fpj\) rec Z_ys    I   Z—A rp+q+i-1 ' 

p,q i     Jcr 

A3CC- 
*Se     =     E?1*DÄ) (3-6) 

p,q i     Jcr 

The inclusion crack is assumed to be of elliptical shape with a high aspect ratio. Consequently, 
the crack boundary dQ,CT is parametrically represented through a conformal mapping of the ellipse 
as fcr(x,y) = 1. for represents a parameterized radial coordinate with the property fcr —► oo as 
(xiV) ~* oo• The reciprocal terms fP+q+i-i in $^ec facilitate zero traction condition on the crack 

Jcr 
boundary dQCr- The same terms in <&™£ provide asymptotic stress gradients near the crack tip in 
the matrix. Stress increments may be derived by substituting $ functions in the equation (3.2) in 
the form {A<rm} = [Pm]{Aßm} for the matrix and {A<rc} = [Pc]{Aßc} for the inclusion. All of 
the stress coefficients {A/3m} and {A/3C} are a-priori unknown and are solved by setting the first 
variation of the element energy functional (3.1) with respect to the stresses to zero. Compatible 
displacement increments are generated on each of the boundaries/interfaces düe, düc and dücr by 
interpolation in terms of generalized nodal displacements as , 

{Au} = [Le]{Aq}      ,       {Au'} = [Lc]{Aq'}      ,       {Au"} = [Lcr]{Aq"} (3.7) 

where {Aq}, {Aq'} and {Aq"} are the nodal displacement increment vectors, and [Le], [Lc] and 
[Lcr] are the corresponding interpolation matrices. In general, linear forms of [L] are computation- 
ally efficient. However for the crack boundary, discontinuous normals at the nodes may degrade 
the solution and hence a quadratic interpolation is implemented. Details of the solution process 
are provided in [34, 19, 21]. 

3.2.3    Constitutive relations and particle cracking criterion 

The reinforcing phase of particles are assumed to be brittle and are modeled as linear elastic 
materials. The matrix material on the hand is assumed to be ductile, and is modeled by small 
deformation elasto-plasticity relations using associated J2 flow theory with isotropic hardening. For 
the brittle particulate materials, microstructural damage initiation is assumed to be governed by 
a maximum principal stress based criterion, also known as the Rankine criterion. In this criterion, 
a crack is initiated when the maximum principal stress in tension exceeds a critical fracture stress 
aCT at a point. In the computational procedure, complete particle cracking or splitting is assumed 
to occur in the form of an elliptical void, as soon as the principal tensile stress reaches a„. In 
the case of particle cracking, the crack tip coincides with the interface and is completely contained 
in the particle, while it extends nominally into the matrix for particle splitting. A parameter 
dcrack = inciJston Dimension distinguishes between complete cracking and splitting of inclusions. A 
fully cracked inclusion corresponds to a value dCTack = 1, for which the crack terminates at the 
inclusion-matrix interface, whereas splitting is represented by dcrack = 1.004 for which the crack 
tip has moved slightly into the matrix. In the incremental computational procedure, more than 
one point may exceed the critical <rcr value during increment.  The location of a single crack is 

10 



determined by a weighted averaging method as: 

Xdamage = a^y) ,        Vdamage =  ac£y)        V     [aftx, y) > CTcr] (3.8) 

O'er 

where a°i(x,y) corresponds to all values of maximum tensile principal stress larger than acr in the 
particle. The crack is oriented at right angles to the principal stress directions at {x damage-, ydamage) 
and extends to the interface on both sides. 

Critical Fracture Stress 

Various experimental studies on metal matrix composites [6, 22, 24], suggest that the critical stress 
acr for particle fracturing is not only material dependent, but is also influenced by the particle 
size due to the existence of microcracks. Micrographs of damaged composites indicate that larger 
particles tend to fracture at lower load levels than smaller particles. To account for the size effect in 
particle cracking, and hence flaw size and distribution, two alternative approaches are considered. 
These criteria have been discussed in Curtin [25], Kiser et.al. [24]. The first is a fracture mechanics 
based criterion, in which particles are assumed to contain flaws and the critical stress to fracture 
is determined from mode-I fast fracture of these flaws. In this criterion, an initial particle flaw 
size c is assumed to be a fraction of a characteristic length D, and is expressed as. c = eD. The 

characteristic length is considered to be the diameter of an equivalent circle or D = y^r, where 
A is the particle area. The factor e is determined from experimental observations, and a value 
~ 5 — 15% is found to be suitable in this study. For mode-I fracture, the critical load to fracture 
acr is thus related to the fracture toughness Kic through the relation: 

rr      -    KlC      - KlC Ci Q\ UCT   — I       — / — \Ö-V) 
yf-K c        V?r eD 

Larger particles with large initial flaws will fracture at smaller critical stresses by this relation. The 
second criterion uses statistical functions to correlate particle size, stress levels and failure. It is 
based on a Weibull distribution, in which the probability of particle fracture Pf(A,a) is related to 
the particle volume (area in 2-D) A and the maximum principal stress CTJ as: 

Pf(A,a)=l-e-A&m (3.10) 

where cr^. and m are two material parameters in the Weibull distribution. The probability of damage 
in this model, increases with larger particles at larger stress levels. The Weibull parameters acr and 
m may be calculated by correlating geometric features and simulated stresses with experimental 
observations, as discussed in the section on numerical examples. 

3.3    Validation Examples for Voronoi Cell FEM 

The accuracy and efficiency of the Voronoi cell finite element model in stress analysis of hetero- 
geneous materials with particle cracking has been extensively verified by comparison with results 
of analyses conducted with conventional finite element packages as well as with published results 
in the literature. Several comparison studies have been made with this model, some of which are 
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described in [21, 19]. Only one such example studies with simple, uniform distribution is described 
here. To establish an aspect ratio for the elliptical cracks, a numerical experiment was conducted 
with various aspect ratios viz. (| = 3,5,10,25,20 and 100). From this study, a ratio f = 10 was 
found to be most desirable from an efficiency and accuracy point of view. While both plane stress 
and plane strain problems have been solved, the numerical examples presented in this work are 
only for the plane strain assumption. 

3.3.1    Square diagonal packing with existing crack 

This comparison problem, studied by Finot et.al. [15] with finite deformation kinematics, involves 
stress analysis of a square-diagonally packed composite microstructure with pre-cracked inclusions. 
The representative material element (RME) consists of two square SiC inclusions (volume fraction 
Vf = 20%) in an Al-3.5%Cu matrix as shown in figure (3.3.1). The elastic properties of SiC par- 
ticles are assumed to be: Young's Modulus E = 450 GPa and Poisson's Ratio v = 0.2. The 
elastic-plastic properties for the Al-3.5% Cu alloy matrix are taken as: Young's Modulus E = 72 
GPa, Poisson's Ratio v = 0.32; Post yield behavior (Power law hardening) am = ^(e^/eo + 1)^, 
with (To = 175 MPa, and N = 0.2. Different degrees of pre-existing damage, e.g. 0% damage with 
two intact inclusions, 50% damage with cracked inclusion, and 100% damage with both inclusions 
cracked, are assumed in accordance with those used in [15]. For 0% damage, the matrix stress 
function <frm in equation (3.3) consists of 61 terms, with 25 polynomial terms $~;y (p + q — 2..6 
in equation 3.4) and 36 reciprocal terms *™c (i = 1..3,p+ q = 2..6 in equation 3.5). The cor- 
responding inclusion stress function $c in equation (3.3) consists of 25 polynomial terms &™iy 

(p + q = 2..6 in equation 3.5). The function / in equation (3.5) for <&™c is created by a Fourier 
series transformation of the square interface, as described in [34]. For damaged microstructures, 
36 additional terms in the form of #™£ and <&£ec are appended to the stress functions $m and #c 

(i = 1..3,p+ q = 2..4 in equation 3.6). 

The VCFEM simulation of the RME is executed for upto a vertical applied strain of 2% as 
shown in figure (3.3.1). In figure (3.3.1) the macroscopic stress-strain responses, calculated by 
taking volumetric averages of microscopic variables, are compared with results in [15], and excellent 
agreement is recorded. The stress capacity of the RME reduces considerably with transition from 
particle cracking to particle splitting. As the crack propagates into the matrix due to splitting, 
the damaged inclusions cease to carry significant load. The major load now shifts to the matrix 
material and the remaining undamaged inclusions. Contour plots of the effective plastic strains 
for the cracked and split microstructures at eyy = 2% are presented in figures (3.3.1). The matrix 
regions vertically adjacent to the split inclusions have considerably less plastic strains than those 
adjacent to cracked inclusions, due to much lower stresses caused by splitting. Also in the case 
of splitting, a considerably larger plastic strain accumulates near the crack tip. The plastic strain 
flows in the form of ligaments from one crack tip to the next, causing bands of strain localization. 
Similar observations have also been made in [15] for axisymmetric inclusions. 

3.4    Damage in Non-uniform MicrostructureS 

Examples in the previous section consider pre-existing damage, and thus do not involve crack 
initiation and change of element topology. The present section deals with continuously evolving 
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Figure 3.1: Representation and VCFEM mesh for RME with Vf = 20% cracked square inclusions 
(a) 0% |gflffiKe (b) 50% damage (c) 100% damage.  
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microstructural topology through the onset and evolution of particle cracking in more complex, 
computer simulated and real microstructures. For undamaged Voronoi elements, the matrix stress 
function $m in equation (3.3) consists of 34 terms with 25 polynomial terms $™0iy {p + q = 2..6 
in equation 3.4) and 9 reciprocal terms <!>™c (i = 1..3,p = 0..2,q = 2 - p in equation 3.5). The 
inclusion stress function $c consists of 25 polynomial terms $™0iy (p + q = 2..6 in equation 3.5). 
Fewer reciprocal terms are used than in the previous example due to the smooth interface for 
circular inclusions. For cracked elements though, the additional reciprocal terms are the same as 
those in the previous example, i.e. (i = 1..3,p + q = 2..4 in equation 3.6). 

3.4.1    Computer simulated microstructures 

The effect of particle clustering on damage evolution is studied with two computer generated 
microstructural distributions as follows. 
(a) A hard core distribution: which is generated as a variant of a pure random Poisson pattern 
through the imposition of two constraints, namely (a) no two inclusions are allowed to overlap, and 
(b) all inclusions are completely contained within the region window. 
(b) A single cluster hard core distribution . 
(c) Triple cluster hard core model, where clusters are characterized by reduced average inclusion 
separation distance in an otherwise hard-core region. 
Each RME consists of 50 equi-sized circular Si particles dispersed in an Al-Si-Mg alloy matrix, and 
constituting a 20% volume fraction. Pertinent dimensions are : RME size=200/j x 200/x, particle 
diameter =14.2/1, cluster diameter in (b) = 33.38// and cluster diameter in (c)= 25.78/x. Details of 
the generation process are described in [27]. 

Characterization 

Statistical functions of geometric descriptors, which can discriminate between patterns, as discussed 
in [27, 28], are considered. Figures 3.4.l(a and b) show the cumulative distribution function F(A) 
and the probability density function f(A) of the local area fraction, measured as the ratio of the 
particle size to the area of the associated Voronoi cell. The range of A for hard core pattern is 
significantly shorter than for clustered patterns and thus the difference in F(A) increases with 
increasing area fraction. The high spike in f(A) for the hard core pattern is a consequence of the 
steep gradients due to pronounced uniformity in local area fraction, and the intensity of these spikes 
diminishes with clustering. The cumulative distribution function F(d) and density distribution 
functions f(d) for center to center nearest neighbor distances are plotted in figures 3.4.l(c and d). 
The longer plateaus in F(d) and the corresponding zeros in f(d) for clustered patterns are for the 
distances for which a near neighbor does not exist. Spikes in f(d) are much more pronounced for 
the hard-core distribution due to large number of neighbors at nearly similar distances. The lowest 
d values are much smaller for the clustered patterns. Second order intensity function K(r), defined 
as the number of additional points expected to lie within a distance r of an arbitrarily located 
point divided by overall the point density, is an informative descriptor and has been discussed 
in [22, 27, 28]). Additionally, the pair distribution function g(r) = ^^p-, corresponds to the 
probability g(r)dr of an finding an additional point within a circle of radius dr and centered at 
r. The two functions are plotted for the patterns in figure (3.4.1e and f) and compared with 
a pure Poisson process for which K(r) = 7rr2 and g(r) = 1. With increased in clustering, K(r) 
deviates from that for the Poisson process. The peaks in g(r) are more pronounced for the hardcore 
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distribution indicating a greater likelihood of encountering additional particles at lower radii for 
this volume fraction. 

Damage Simulation 

Both complete particle cracking and particle splitting are analyzed in this example, with initially 
undamaged particles. Constituent material properties are as follows: 
For the Al-Si-Mg matrix: Young's modulus E = 69 GPa, Poisson's ratio v — 0.33, and the post 
yield elastic-plastic behavior is obtained from data on B-treatment matrix material in figure (5-1) 
(page 137) of Hunt [22]. For the Si inclusions: Young's modulus E = 161 GPa, Poisson's ratio 
v = 0.2. All particles are of identical shape and size, and therefore a constant critical stress to 
failure a„ = 300 MPa is assumed. The RME's are subjected to a macroscopic horizontal tensile 
strain that increases from 0 to a maximum of exx = 2%. Evolving damaged configurations by 
particle splitting are shown in figures (3.5a-f). For the hard core pattern, the first set of particles 
crack at exx = 0.6%. Particle cracking occurs at random locations with increased loading upto 
a strain of exx = 1.6%, after which no additional cracking is noticed. Large plastic strains occur 
in regions near the crack tips. However due to the lack of close proximity of cracked particles, 
plastic strain regions were not observed to propagate in any preferred direction. In contrast, for 
the triple cluster microstructure in figure 3.5d-f, the first set of particles crack and split within the 
cluster near the top-right corner at exx = 0.4%. With increased loading, high stress concentration 
at the crack tips lead to progressive cracking of other particles inside this cluster before particles in 
other clusters begin to crack. However if only particle cracking is allowed, particles in both the top 
right and bottom center clusters begin to crack almost concurrently. Particles in the third cluster 
remain rel atively undamaged during the entire process. At the final strain exx = 2.0%, most 
particles in the two clusters are split while damage in the third cluster has just begun. During the 
initial stages of deformation and splitting, localized plastic straining occurs in the top right cluster 
which propagates from one crack tip to the next within the cluster by linking. Plastic straining in 
other clusters are less pronounced during this period. With subsequent particles splitting, plastic 
straining intensifies in bottom-center cluster and eventually links up with strained regions in the 
top cluster. High strain regions are much more diffused in the case of particle cracking and occur 
at higher macroscopic stresses compared to the particle splitting case. 

Macroscopic stress-strain responses of the hard core and triple clustered RMEs are illustrated 
in figure (3.4.1). Abrupt drops due to particle cracking are smoothed in this figure. The stress level 
for the hard core pattern with particle splitting continues to drop throughout the loading. For the 
clustered microstructure, drops are higher in the initial stages due to rapid failure in the clusters, 
followed by increase in the stress levels due to matrix hardening. In general the RME with cracked 
particles projects a considerably stiffer behavior when compared to that with split particles. The 
effect of spatial distributions on damage evolution is studied through marked correlation junctions 
M(r) introduced in Pyrz [22] and used in [27, 28]. Two marks associated with each particle are 
considered for their relevance to damage evolution. They are: (a) a parameter Rps which is defined 
as the ratio of the maximum principal stress to the critical failure stress aCT for an undamaged 
particle, and as the ratio of the current overall strain to the strain at which the particle had 
cracked, for a cracked particle (f£= 1). Rps signifies the propensity to advance the damage state 
in the microstructure; and (b) the average effective plastic strain e~? in each Voronoi cell, which 
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characterizes evolving matrix failure due to presence of damaged particles. 
The marked correlation function M(r), for which a mathematical formula is presented in [22], 
establishes the effect of microstructural morphology on the mark. M(r) for the two patterns and 
for a uniform microstructure (M(r)=l) are compared in figure 3.4.1. For the hard core pattern the 
functions rapidly decay to unity, but for the clustered patterns the decay is considerably slower. 
Higher M(r) values for clustered patterns at short range sampling distances r represent larger 
influence of the damage marks. The high value of M(r) for e? at short sampling distances indicates 
severe matrix straining near damaged particles. The slower attenuation of M(r) for Rps at short 
to medium range indicates that particle cracking is a major mode of damage evolution. This 
function is effective in understanding the sensitivity of damage variables to local perturbations in 
the morphology, and can provide a criterion for determining the optimal RME size. 

3.4.2    Particle splitting simulation with actual micrographs 

In this example, VCFEM analyses is conducted with micrographs obtained from serial sectioning 
of reinforced Al-Si-Mg alloys containing w 10% or 20% by volume of Si particulates (see [29]). 
The material is developed at ALCOA Technical Center by rapid solidification of fine powders using 
a gas atomization process [22], to achieve equiaxed Si particles. The powder is consolidated by 
cold isostatic compaction, canned and degassed at 454°C, and finally consolidated to full density 
by hot isostatic pressing. Two types of microstructure are considered, viz. (a) a naturally aged 
20% volume fraction composite with mean Si particle size of 4.4 /im, and (b) a naturally aged 10% 
volume fraction composite with mean Si particle size of 3.9 (im. Serial-sectioning of the specimens 
yield a series of 2-D sections as discussed in [29], which are then digitized. 
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Characterization 

Equivalent microstructures that closely approximate the actual 2-D morphology of micrographs and 
yet are computationally less intensive are generated. In this process each particle of arbitrary shape 
is replaced by an equivalent ellipse, constructed by equating the 0-th, 1-st and 2-nd moments of the 
actual particles with those of the equivalent ellipses. The moments of actual particle are computed 
as the sum of moments of each pixel contained within the particle, while the moments of the ellipse 
are represented in terms of standard geometrical parameters. The procedure yields (i) the centroid 
(xci Vc), (ii) lengths (a, b) of the major and minor axes, and (iii) angular orientation 6 of the major 
axis of the equivalent ellipse, details of which are discussed in [21]. An optical micrograph of a 
section, overlapped simulated and exact microstructures, and the Voronoi cell mesh obtained by 
surface to surface tessellation, are presented in figures (3.4.2a, b, and c) respectively. 

Two sections of each volume fraction 10% and 20% are analyzed. The Vj = 10% sections have 
77 and 89 Si particles, while the V) = 20% sections contain 97 and 106 Si particles. A majority of 
computer results are explained with respect to sections of the 20%T//, for which the microstructural 
element has dimensions of 205// x 180//, and the two dimensional area fractions for the sections 
are calculated to be « Af = 18.6% and Af = 18.9% respectively (note that the 3-D Vj ~ 20%). 
Particle size distribution histograms (not shown) show considerable scatter within each section and 
also between sections. Cumulative (F) and probability density distribution (/) functions of the 
local area fraction (A) and near-neighbor distance (d) are plotted in figures 3.4.1(a,b,c and d). A 
comparison of the distribution functions in figures 3.4.1 reveal that the particle distribution is more 
in line with the hard-core pattern. Similar observations are also made in the plots of the second 
order intensity function K(r) and the pair distribution function in figure 3.4.1, where the absence 
of local peaks in g(r) signals negligible clustering. These observation is consistent with the material 
fabrication process innwhich the Si particulates are randomly precipitated from the mixture. 

Damage Simulation 

Material properties of the constituents are: For the Al-Si-Mg matrix: Young's modulus E = 69 
GPa, Poisson's ratio v = 0.33, and the post yield elastic-plastic behavior (non-linear isotropic 
hardening) is obtained from data on T4-matrix presented in figure (8) of Kiser et.al. [24]. For 
the Si inclusions: Young's modulus E = 161 GPa, Poisson's ratio v = 0.2 and mode I critical 
stress intensity factor for pure Si is found to be Kic = 0.6 MPa-y/m. In the fracture mechanics 
approach for determining the size dependent critical fracture stress aCT in equation (3.9), the initial 
flaw size c is assumed to be proportional to the average equivalent particle diameter of Davg. The 
proportionality constant e is calibrated by analyses of auxiliary RMEs created from micrographs 
of other sections of the specimen. A comparison is made between the computer simulations and 
experimental observations with micrographs for (a) the number of cracked particles and (b) overall 
stress-strain behavior. The estimate is obtained to be e = ^ = .125 or 12.5%, and therefore the 
critical stress to fracture is taken to be aCT = -JSXL--. For the approach with Weibull distribution, 

the two micrographs of 10%V/ are used for calculating parameters acr and m, since they exhibit 
the onset of particle cracking at exx = 3%. The cross-sectional area A of each individual particle 
is calculated from the data on ellipses in figure 3.4.2(d). The maximum principal stress 07 at 
(■xx = 3% is obtained from VCFE analysis without any particle damage. The probability of failure 
Pj(A,a) in equation (3.10) is assumed to be > 0.95. The Weibull parameters are evaluated to be 
m = 2.37 and aCT = 2.12 GPa, by comparison with the micrograph observations and by fitting the 
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Figure 3.8: (a) Optical micrograph of a section of Al-Mg-Si composite (Si V) = 20%) (b) simulated 
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data in a least-square sense. The probability function Pf of individual particles indicate that both 
particle size and stress levels contribute independently towards cracking. A qualitative comparison 
between the two approaches for evaluating critical stress, is made by VCFEM analysis with the 
20%Vj section of 97 particles strained to exx = 6%. Progression of damage in the microstructure 
with increasing strain is shown in figure (3.4.2a,b and c). Particles colored black are cracked while 
the grey particles are uncracked. A comparison of the fraction of different sized particles that 
are cracked by each approach, is made with actual micrographic observation (figure 3.4.2a) in 
histograms (3.4.2d and e). The fractions for the actual micrograph are shown in grey with dashed 
outline. The histograms indicate that a while both criteria are good for large particles, the Weibull 
distribution based approach provides a better agreement with the micrographs at the smaller size 
range. Hence, it is used in all subsequent simulations. 

A damage parameter is defined as p = j07a° M^ITAU 
PpattidL > wnicn accounts for size, is plot- 

ted in figure 3.4.2a for each of the two sections of the Vj = 10% k 20% composites as a function 
of increasing strain. Experimental values of the corresponding damage parameter are given in 
Hunt[22], where the areas are calculated by sectioning after straining to a certain level. Conse- 
quently a single data point is obtained from each specimen. Three experimental data points are 
plotted for the Vp = 20% composite, while the Vp — 10% has a single data point. Generally 
a good agreement is noted between simulated results and experimental data for the Vj = 20% 
composite. Stress-strain response of nearly undamaged microstructures are shown in figure 3.4.2b 
by loading RMEs in compression to an average strain of cxx = 6%. While the elastic response 
are not very different, the 20%V/ composite has higher yield stress and higher flow stress than the 
10%Vf composite. The tensile response with particles cracking according the Weibull criterion is 
shown in figure 3.4.2 c. Results of VCFEM analyses for each volume fraction are averaged over the 
two sections and are compared with experimental results of Kiser and Zok [24]. While VCFEM 
analysis is in 2-D and the experimental results are for 3-D, the comparisons have a good qualitative 
agreement. The cross-over point at which the 20%V/ composite becomes less stronger than the 
10%V/ composite, is approximately at exx « 1.2 - 1.8%, and compares well with the experimental 
value of exx « 1.8%. The stress capacity is in general higher for VCFEM predictions, which may 
be attributed to the constrained plastic flow arising from plane strain constraints. Additionally, 
the present simulation does not allow matrix softening which can also lower the load capacity. The 
stress-strain behavior of a uniform (square edge) microstructure with a single circular inclusion 
of volume fractions 10% and 20% are also plotted. The 10% uniform composite does not crack 
for the range of strains considered and predicts a stiff response. Failure of the single particle in 
the 20%V/ composite results in an abrupt drop in load capacity and yields unreasonable predictions. 

Contour plots of particle failure probability and effective plastic strains for the 20%Vf composite 
are illustrated in figures (3.4.2) and (3.4.2) respectively. Damaged particles are in white with cracks 
in figure (3.4.2), and the contour plots are for undamaged particles indicating the likelihood of 
damage. An interesting observation made from these plots is that some large particles which exhibit 
a higher tendency to crack at early stages of loading, may remain intact throughout due to failure of 
neighboring particles and load redistribution. This phenomenon, also noticed with particle clusters 
in the previous example, illustrates the influence of evolving microstructural morphology on the 
propagation of damage. A particle crack induces large plastic flow in the neighboring matrix which 
causes the stress to rise in particles in this region and eventually initiate a crack. The plastic strain 
distribution in figure (3.4.2 a) shows localized bands of severe deformations emanating from crack 
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Figure 3.9: Simulated configurations of evolving damage at (a) Ixx = 3.0%, (b) Ixx = 4.2% and 
(c) exx = 6.0% with a Weibull distribution based damage criterion; (d,e) Histograms of number 
of damaged particles at eyy = 6%, by Weibull distribution and fracture mechanics based damage 
criteria respectively. 
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Figure 3.10: (a) Area fraction of cracked particles as a function of the macroscopic strain. Macro- 
scopic stress-strain response for the Al-Si-Mg composite microstructures at two volume fractions 
(b) compressive response (c) tensile response. 
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Figure 3.11: Contour plots of particle fracture probability by the Weibull damage criterion im- 
mediately before (a) exx = 4.2% and (b) exx = 6.0% for the Al-Si-Mg composite microstructure 
(Vf — 20%). (Damaged particles are in white with cracks). 

tips and propagating to neighboring particles with cracks. The remainder of the matrix undergoes 
relatively smaller deformations. Marked correlation functions M{r) are plotted in figure (3.4.2) as 
functions of distance and particle shapes, for the two sections of 20%V/ composite. Two marks 
viz. (a) particle fracture probability Pj and (b) effective plastic strain e? are selected as qualitative 
indicators of microstructural damage. Uniform M(r) plots of unit value occur for regular patterns 
and correspond to identical marks. Figure (3.4.2a and b) of M{r) with respect to the sampling 
distance r shows that the functions for Pf quickly stabilize near the unit value, while the decay 
is slower for e? with a few abrupt peaks. The lack of strong clustering in these patterns leads to 
smaller influence regions for these microstructures. Marked correlation functions with respect to 
the relative difference in form factors Ff are plotted in figure (3.4.2c and d). The form factor is an 
indicator of the deviation in shape from a perfect circle (Fj=l), and for an elliptical shape, may 
be expressed as (see [28]): 

Ff = 
ATTR

2 

perimeter2 R = Vab     ;     perimeter tu 7r[1.5(a+ b) - y/ab] (3.11) 

where a and b are the major and minor axes. The maximum observed form factor Fj is computed 
to be 0.97 while the minimum is 0.48. The figures (3.4.2c and d) depict increasing correlation 
functions especially for ep. This infers that shape has significant influence on the damage in these 
microstructures. 
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3.5    Conclusions 

This work is devoted to stress analysis of non-uniform, ductile matrix composite microstructures 
with particle cracking, by the Voronoi Cell finite element method (VCFEM). The computational 
model assumes complete cracking at the onset of damage, and differentiates between the behavior 
of fully cracked particles and split particles. The uniqueness of this model lies in its ability to 
model, continuously changing element topology due to progressive material failure, with no user 
interference. Validation of the computation model for damage is done through various studies, 
including comparison with other numerical studies in the literature that use conventional finite 
element codes. These studies have predominantly analyzed simple uniform distributions with pre- 
existing cracks. Good agreement is obtained in these comparison studies, both from a macroscopic 
and microscopic point of view. 

A major advantage of VCFEM is that it can be used for analyzing damage in nonuniform real 
micrographs without making major morphological simplifications. A set of computer generated 
hard-core and clustered microstructures are simulated to understand the effect of spatial distribu- 
tion on damage evolution. Damage initiates within each cluster, propagates within the cluster and 
finally links up with damage in the neighboring clusters. Regions of severe plastic flow exist in 
the matrix ahead of split particles, indicating possible sites of matrix failure. Particle splitting is 
found to yield much softer overall response than particle cracking. In a concluding example, the 
VCFEM model is directly constructed from a digitized optical micrograph of an Al-Si-Mg compos- 
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Figure 3.13: Marked correlation functions of (a) failure probability and (b) average effective plastic 
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ite system. VCFEM results are compared with results of experiments with this material for two 
volume fractions. Good concurrence is obtained in the overall stress-strain behavior, as well as in 
the number of damaged particles in the microstructure. Larger particles tend to fail at lower load 
levels and therefore serve as sites of damage initiation. Nevertheless, smaller particles may also 
damage with loading, due to stereological factors like proximity with other particles and relative 
shape. It is noted that damage evolution in real microstructures is a gradual process, and takes 
place by progressive particle failure. Material behavior is therefore misrepresented with the single 
cell models where particle cracking result in abrupt changes in response. Statistical descriptors are 
used as indicators of morphological influence on the damage state. The efficiency of the VCFEM 
codes is noteworthy. A comparison with conventional FEM packages for undamaged-nonuniform 
and damaged-uniform materials show a ~ 30-50 times reduction in computing time. Currently, 
matrix cracking phenomenon is being incorporated in VCFEM and this will be reported in future. 
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Chapter 4 

Multi-level Computational Model 
For Multiscale Damage Analysis In 
Composite And Porous Materials 

4.1    Introduction 

Heterogeneous structures with second phase inclusions or voids in the microstructure are conven- 
tionally analyzed with macroscopic properties obtained from homogenization of response at smaller 
(meso-, micro-) length scales. The mathematical homogenization theory, which uses asymptotic 
expansions of displacement, strain and stress fields about macroscopic values, has been used as a 
tool for analyzing multiple scale responses in [1, 2, 3, 4]. The method is based on assumptions of 
spatial periodicity of microscopic representative volume elements (EVE) and local uniformity of 
macroscopic fields within each RVE. It decomposes the multiscale boundary value problem into a 
decoupled set of micro-scale RVE problem and a macro-scale problem. Concurrent finite element 
analyses are executed at the each scale for information transfer between the scales. Multiple scale 
analysis of linear elastic reinforced composites by this method have been conducted by Fish et. 
al. [5, 6], Kikuchi et. al. [7, 8]. For nonlinear materials, the homogenization methods have been 
extended by Suquet [9], Fish et.al. [10], Guedes [11] and Cheng [12]. The method has also been 
implemented to simulate damage by fiber-matrix debonding in linear elastostatics [13] and fiber 
rupture using a phenomenological damage model [14]. 

Despite its advantages, asymptotic homogenization has suffered shortcomings arising from effi- 
ciency and accuracy considerations. Enormous computational efforts can result with this method 
due to the fact that at each integration point in the macroscopic model, boundary value problems 
of the microstructural RVE should be solved twice. To economize computations, many studies have 
assumed simple unit cells models of the microscopic RVE. Such idealizations may however be unre- 
alistic for deformation and failure analysis of many materials. The homogenization method has an- 
other major limitation stemming from its basic assumptions, viz. (a) uniformity of the macroscopic 
fields within each RVE and (b) spatial periodicity of the RVE. The uniformity assumption is not 
appropriate in critical regions of high gradients, where the macroscopic fields can vary considerably. 
Free edges, interfaces, macrocracks, neighborhood of material discontinuities and most importantly 
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in the regions of evolving microscopic damage and instability are potential sites of nonuniformity. 
Furthermore, statistical periodicity implies that the RVE may be repeated to represent the entire 
neighborhood of a macroscopic point. For non-uniform microstructures sufficiently large portions 
should be considered as RVE for homogenization analysis. Unit cell models are severely limited in 
this respect. Even higher order theories of homogenization may be computationally unviable. A 
few effective global local techniques based on hierarchical decomposition and superposition of field 
variables have been proposed by Belytschko [15], Reddy [16] and Hughes [17]. Pagano and Rybicki 
[19] had discussed the breakdown of effective modulus theory for composite laminates with free 
edges and the need for global-local techniques. Fish et.al. [6, 18] have used global-local techniques 
with multigrid methods to extend the multiple scale modeling to non-periodic materials. Zohdi 
and Oden [20, 21] have developed a homogenized Dirichlet projection method (HDPM) which re- 
solves the microstructural effects at different scales on the macroscopic response of heterogeneous 
structures. 

To improve the accuracy of multiple scale analyses involving microstructural damage of elastic- 
plastic composite and porous structures without computational efficiency, an adaptive multi-level 
method is proposed in this work. It uses computational hierarchy in the different levels to con- 
currently predict evolution of variables at the structural and microstructural scales, as well as to 
track the incidence and propagation of damage. Analysis of microstructural response with arbi- 
trary distributions, shapes and sizes of heterogeneities is conveniently done by the Voronoi Cell 
finite element model (VCFEM) [22, 23, 24, 25]. The VCFE model naturally evolves by tessellation 
of the microstructure, to generate a morphology based network of multi-sided Voronoi polygons. 
Each Voronoi cell with the embedded heterogeneity is treated as a FEM element in this model. 
Incorporation of micromechanics based assumptions into a hybrid finite element formulation im- 
parts a high level of computational efficiency with sufficient accuracy and resolution in this method. 
Furthermore, pre-processing efforts in generating microstructural models are drastically reduced. 
Various thermo-elastic and elastic-plastic problems of composite and porous materials have been 
successfully analyzed by VCFEM [22, 24, 25]. Progressive damage by particle cracking has been 
done in [23] and VCFEM has been used to relate image analysis and quantitative characterization 
with microstructural response in [24]. For periodic representative volume elements (RVE) of elastic 
and elastic-plastic materials, the microstructural VCFEM has been coupled with structural analysis 
codes by using asymptotic homogenization in [26, 27]. When the method fails due to questionable 
assumptions of macroscopic uniformity and statistical periodicity, a combination of homogeniza- 
tion and global-local methods is a necessity. This implementation is a nontrivial undertaking due 
to lack of apriori knowledge of regions requiring differential resolution. The adaptive multi-level 
methodology developed in this work adresses this challenge. The model differentiates between 
non-critical and critical regions for which the model ranges from macroscopic computations using 
continuum constitutive relations to zooming in at 'hotspots' for pure microscopic simulations. The 
adaptive process significantly increases the efficiency while retaining appropriate level of accuracy 
in the hierarchy. The chapter begins with a discussion on two scale computations. It introduces 
three levels of the computational domain which include macro, macro-micro and microscopic anal- 
ysis. Numerical examples are conducted for heterogeneous materials with a variety of microscopic 
architectures to support its development. 
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structure 

(a) • tm 

Figure 4.1: A heterogeneous structure showing various scales: (a) The structure at the macroscopic 
scale of applied loads (b) A representative volume element (RVE) at the microscopic scale with 
the VCFE model and (c) A Voronoi cell element at the scale of a single heterogeneity or basic 
structural element. 

34 



4.2    Two Way Coupling for Multiple Scale Modeling 

Multiple scale modeling of heterogeneous materials is necessary to concurrently account for spatial 
variability at the macro- and micro-scales. An effective model of this class requires two-way coupling 
for efficient computing, as well as for accurate representation of the necessary variables at different 
scales. The first is a 'bottom up' coupling for determination of equivalent homogeneous behavior at a 
macroscopic point x, as a function of the microstructural geometry and behavior of the constitutive 
phases, but independent of applied loads to the structure. In the homogenization procedure, an 
isolated representative volume element (RVE) Y(x) C 5J3 is identified at microstructural scale of 
heterogeneities (figure 4.1b). The scale y of the RVE domain Y(x) may be large with respect to 
the characteristic length 1 of microscopic heterogeneities, but is significantly small compared to the 
the macroscopic length scale L of the structure and applied loads. Homogenized variables at the 
macroscopic scale are obtained by volume averaging of variables in the RVE, following the definition 

<f>Y=^JYf(y)dy (4.1) 

The condition for macroscopic homogeneity, according to the Hill-Mandel hypothesis [29], assumes 
equivalence of strain energy for the actual and equivalent homogenized media. Thus for a statically 
admissible stress field o-(y) and kinematically admissible strain field e(y), 

< o- : e >y=< <r >Y:< e>y        Vy € Y (4.2) 

The microscopic stress o-(y) and strain e(y) fields satisfying the homogeneity condition (4.2) may 
be obtained by solving boundary value problems for the RVE Y with prescribed homogeneous 
stress/strain or periodicity boundary conditions, stated as: 

T6 =< or >y -n(y) = tr ■ n(y)  on  dY :     Uniform Traction      (a) 

u6 =< e >Y y on  dY :     Uniform Strain      (b) 

ub =< €>Y y + u=< e >Y y + ü + kY  on dY :    Y-Periodicity      (c) (4.3) 

where k is an integer and Y is the basic period of the Y-periodic displacement functions. The 
macroscopic constitutive equations are obtained by solving a boundary value problem of the RVE 
Y with one of the three sets of boundary conditions in equation (4.3), followed by the averaging 
process in equation (4.1). For linear elastic constituent phases in Y, the relation between the strain 
energy functions has been established in Suquet [30] as: 

<e>:E£.:<e><<e>:E*eP:<e><<e>:Ejtr:<€>        VE C &9 (4.4) 

where Etr, Eper, Esir are respectively the homogenized stiffness tensors evaluated with uniform trac- 
tion, periodicity and uniform strain boundary conditions, and < e > is the macroscopic (applied or 
averaged) strain field. The discrepancy with the kinematic and kinetic boundary conditions reduce 
with increasing size of Y. It is generally concluded [8], that for the same RVE size, the periodicity 
boundary conditions are expected to yield more accurate statistically homogenized constitutive 
parameters and macroscopic properties. 
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The other coupling is the 'top down' where the evolution of variables are evaluated in the 
microstructure from known macroscopic variables, by a process termed as localization. In those 
regions, where the microstructure may admit a RVE Y, the microscopic variables can be evaluated 
by solving a boundary value problem with imposed macroscopic strains and the local periodicity 
condition in equation 4.3c. In other regions, where assumptions of local periodicity of the RVE 
may be unrealistic, the localization process will entail direct interfacing of the microstructural and 
macroscopic regions. 

4.3    A Multi Level Model for Coupling Different Scales 

In the spirit of true two way coupling of multiple scale problems, the computational domain is 
adaptively decomposed into three levels of hierarchy based on requirements of resolution. Such 
hierarchy is intended to increase computational efficiency as well as accuracy in concurrent predic- 
tion of variables at the continuum and microstructural scales. As proposed in [31], the model uses 
homogenization of microstructural RVE solutions to evaluate homogenized properties and cascades 
down the scales at hotspots of evolving damage. The three levels of hierarchy with requirements of 
increasing resolution (figure 4.2) are as follows. 
•i. Computational Subdomain Level-O: 
These correspond to non-critical macroscopic regions in figure 4.2a, where deformation variables 
are relatively uniform and periodicity conditions may be assumed for the underlying material RVE. 
Scale effects are negligible in this region and local constitutive relations may be derived from pos- 
tulates of the RVE approaching zero volume. Continuum level anisotropic plasticity constitutive 
relations, that are consistent with the actual microstructural constitution, are developed for macro- 
scopic modeling of these regions. 

The level-0 macroscopic simulations are accompanied by element refinement or h-adaptation for 
two reasons. The first is to identify and reduce a chosen 'error measure' in the macroscopic com- 
putational model. A second attribute is that it enables the computational model to 'zoom in' on 
regions of evolving nonuniformity due to microscopic non-homogeneity. This reduces the disparity 
in size of the macro- and micro- scale elements by successive refinement of macroscopic elements 
in the critical regions as shown in figure 4.2a. 

•ü- Computational Subdomain Level-1; These are regions that face imminent microscopic 
non-homogeneity and resulting macroscopic nonuniformities (figure 4.2a,b). Though the computa- 
tions are still macroscopic, concurrent monitoring of the development of damage and instabilities in 
the RVE is possible in this level. For concurrent macro- and micro- scale analyses the asymptotic 
homogenization methods, which is based on the existence of an RVE, is used. Macroscopic element 
refinement by h-adaptation continues for this level. 

•"i- Computational Subdomain LeveI-2; These critical regions materialize with the evolution 
of microstructural damage in the form of evolved microcracks or instabilities (figure 4.2b), leading to 
high macroscopic field gradients. The assumptions of macroscopic uniformity and local periodicity 
are unrealistic. To realize scale effects, it is required that the level-1 macro-micro computational 
model switch to a completely microscopic model, encompassing large portions of the microstructure. 
A detailed flow chart of the adaptive hierarchical process is depicted in figure 4.3. 
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Figure 4.2: A hierarchical multi-level computational domain; Level-0 for macroscale continuum 
modeling (b) Level-1 for coupled macro-microscopic (RVE) modeling with asymptotic homogeniza- 
tion and (c) Level-2 for pure microscopic modeling 
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The substructured computational domain is delineated as an elastic-plastic body of material 
domain UM AT that consists of regions SIMAT(P) f°r which the RVE is repeated periodically, and 
also of regions UMAT{np) where the periodicity assumptions do not hold, i.e. 

&MAT(X, U) = fiMj4T(p)(x, U) U Q.MAT(np)(x, u) (4.5) 

The macroscopic regions of periodicity are further constituted of repeating a large number of RVE's 

<W(P) = uffi>YJrrM  where ?«*™ = U&Y< (4.6) 
Here N(p) corresponds to the number of different RVE's Y^ in the periodic regions, and for all 
practical purposes, oo corresponds to a sufficiently large number. The non-periodic region &MAT(np) 
is denned as the set of all microstructural regions for which the N(np) RVE's are not repeated, i.e. 

SlMAT(nP) = uSp)Yr™  i   Yfc n Y, = 0 V * ? I (4.7) 

The level-0 and level-1 of the computational domain ft correspond to the periodic regions, while 
the level-2 belongs to the non-periodic regions as 

ti}0 U fiji C SlMAT{p)    ;    fi/2 C SlMAT(np) (4.8) 

4.4    Homogenization with Voronoi Cell FEM 

4.4.1    Asymptotic homogenization with microstructural periodicity 

Consider a heterogeneous structure occupying a region Slstructure (figure 4.1a), for which the hetero- 
geneous microstructure constitutes of spatially repeated RVE's Y(x) about a macroscopic point x 
as shown in figure 4.1b. The RVE is discretized into a mesh of Voronoi cells, which naturally evolve 
from the microstructure by Dirichlet tessellation. In the Voronoi cell FEM (VCFEM), each Voronoi 
cell represents a basic structural element (BSE) which is the neighborhood of a heterogeneity in 
the microstructure. The dimensions of the Y(x) are typically very small in comparison with the 
structural dimensions L, i.e. £ is a very small positive number e. Due to variation of evolutionary 
variables in a small neighborhood e of the macroscopic point x, all variables are assumed to exhibit 
dependence on both length scales i.e. $£ = $(x, -), where y = -. The superscript e denotes associ- 
ation of the function with the two length scales and hence ft£ corresponds to a connected structural 
and microstructural domain. The assumption of periodic repetition of the microstructure about x 
makes the dependence of the function on y(= ^), Y-periodic [7, 4, 8, 14]. For small deformation 
elasto-plasticity, the rate forms of the equilibrium, kinematic and constitutive relations are given 
as: 

'dill     dii\ 

Constitutive :   d^ = ü^e^ in  ft£ (4.9) 

where cr^(-x.,y), e£j(x,y) and w,£(x,y) are Y-periodic rates of stress, strain and displacement fields 
respectively. Furthermore the boundary tractions and displacements are assumed to satisfy the 
following prescribed conditions. 

&ijn,j = ii     on Tt    ,    u\ = Ui     on Tu (4.10) 
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where n is the unit normal to the boundary. The Y-periodic displacement rate or increment field 
is approximated by an asymptotic expansion about x with respect to the parameter e: 

üKx) = ü?(x,y) + e^(x,y) + €2ü?(x,y) + ---,     y = ^ (4.11) 
x 

e 

Noting that the spatial x£ derivative of any function depends on the two length scales and is given 
as: 

d   /  , x.\      d$      lö$ 

the stress rate tensor &\j can be expressed as 

*& = 7*S + 4 + €*S + e2*S'" (4-13) 

where 

0«-EWdv,   '   CTij-Eijkl\d^ + l^)   '   <Tij-Eijkl\d^ + 'd^)        (4,14) 

From equations 4.9 and 4.13, and using the periodicity condition on the EVE boundary fjp   f dTy = 
0, it can be proved (see [26, 27]) that 

«J-0.    «f-«?(x)    anä    g = ^{M+^}] = o (4.15) 

Furthermore, by neglecting the terms associated with e or higher in equation (4.13), the constitutive 
relation in the Y-domain is expressed as 

?a = -h = m*?» = *wff + ff) (4-16) 

Here ee
kl is the microstructural strain rate tensor, for which -^ is an averaged macroscopic part 

and -g^- is denoted as a fluctuating strain rate tensor [9]. Due to linearity of the rate problem, &jj, 
üj and the microscopic equilibrium condition can be expressed as 

In equation (4.17), crj-j is a Y-antiperiodic function and xf *s a Y-periodic function represent- 
ing characteristic modes of the deformation rate in the RVE. Substituting equation (4.17) in the 
constitutive relations of equation (4.9) yields the microscopic constitutive relations as: 

afj{y) = Etjpm[6kvSlm + J*-] (4.18) 

where % is Kronecker delta. The mean of equation (4.18) yields the homogenized elastic-plastic 
tangent modulus for use in the macroscopic analysis, in the form 

Eft? =< *kj >y= JL | &udY =  ±.JY E!jpm(6kp6lm + ^-)dY (4.19) 
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The macroscopic stress and strain relation can thus be stated as 
r\     77171      £b * 0 

Ey(x) =< ^„(«fcmÄm + ^)j£ >K= Efjmnekl(x) (4.20) 

where the homogenized variables are 27(x) =< <rc(x,y) >y and e(x) =< e£(x,y) >y. The 
incremental small deformation analysis for elastic-plastic materials can be conducted with the 
homogenized modulus at the macroscopic level and by using the Voronoi cell finite element model 
(VCFEM) for solving the microscopic problem. 

4.4.2    The Voronoi cell FEM for microstructural analysis 

The Voronoi cell finite element model has been successfully developed for composite and porous 
materials in [22, 23, 25]. Arbitrary dispersion patterns, shapes and sizes of heterogeneities are 
readily modeled by VCFEM. The computational model naturally evolves by Dirichlet tessellation 
of the microstructure as shown in figure 4.1b. Each Voronoi cell with the embedded inclusion or 
void is treated as an element in this formulation. Preprocessing efforts are drastically reduced, as a 
consequence. In [23, 28], the VCFEM formulation has been extended to include damage evolution 
in the form of particle cracking, where the crack is realized as an elliptical void. Each Voronoi cell 
element is amenable to change in topology from two constituent phases (matrix and inclusions) in 
undamaged cells, to three phases (matrix, inclusion and crack) in damaged cells. Complete particle 
cracking or splitting is assumed to occur at the very onset of damage. 

The Voronoi cell finite element formulation constructs a hybrid element by combining the aspects 
of finite element methods with important micromechanics considerations. Use of a hybrid stress 
based formulation results in a high level of accuracy with a significantly reduced degree of freedom, 
compared to displacement based FEM models. Consider a typical representative volume element Y 
consisting of N undamaged and/or damaged particles, that are contained in each of the N Voronoi 
cell elements, as shown in figure 4.1(b). The assumed stress hybrid formulation in the Voronoi 
cell finite element method (VCFEM) requires independent assumptions of an equilibriated stress 
field (cr) in the interior of each element Ye, and compatible displacement fields u on the element 
boundary dYe, u' on the matrix-inclusion interface dYc and u" on the crack boundary dYcr. In an 
incremental formulation for elasto-plasticity, the incremental variational formulation introduces an 
element energy functional, 

nf(A<r,Au)= - / AB(cr,A<r)dY- [ e : A* dY + 

/    (er + Acr) • ne • (u + Au) ddY      (Inter-element Traction Reciprocity) 
JdYe 

- I    (t + At) • (u + Au) dT      (Boundary Traction) 

- J    (<rm + Acrm -<rc- A<T
C
) • nc • (u' + Au') dY (Matrix-Inclusion Interface Traction) 

- I    (crc + Acrc) ■ XIer ■ (u" + Au") dY      (Crack Boundary Traction) (4.21) 

where AB is the increment of complimentary energy density. Variables (<r,u) correspond to values 
at the beginning of an increment, while variables (Atr, Au) are the corresponding increments in 
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a load increment or step. Outward normals on 8Ye, 8YC and 8Ycr are denoted by ne, nc and ncr 

respectively. Superscripts m, c and cr are associated with the matrix, inclusion and crack phases 
respectively in each Voronoi cell element. The total energy for the entire RVE of N Voronoi cells 
is obtained as Uc — Yle=\ nf • Setting the first variation of Ilf in equation (4.21) with respect to 
stress increments A<r to zero yields the element compatibility as the Euler equation, while setting 
the first variations of IIC with respect to the independent boundary displacements Au, Au'. and 
Au" to zero, yield the inter-element boundary traction reciprocity, matrix-inclusion interface trac- 
tion reciprocity and zero traction crack boundary condition respectively. Independent assumptions 
on stress increments ACT are made in the matrix and inclusion phases in each element, thus allowing 
stress discontinuities across the interface. In this process special forms of the Airy's stress func- 
tion 3>(x,y) to enhance computational efficiency, has been developed in [22, 23] for equilibriated 
stress fields. The functions facilitate stress concentration near the interface and crack boundary, 
accounting for the shape of the inclusion and crack and also help satisfy traction reciprocity at the 
interfaces 8YC and 8Ycr. Furthermore, they decay at large distances from the interfaces. Compati- 
ble displacement increments are generated on each of the boundaries/interfaces 8Ye, 8YC and 8Ycr 

by interpolation in terms of generalized nodal displacements as , 

{Au}=[Le]{Aq}      ,      {Au'} = [Lc]{Aq'}      ,      {Au"} = [Lc1{Aq"} (4.22) 

where {Aq}, {Aq'} and {Aq"} are the nodal displacement increment vectors, and [Le], [Lc] and 
[LCT] are the corresponding interpolation matrices. Details of the solution process are provided in 
[22, 23]. 

4.4.3    Coupling asymptotic homogenization with VCFEM 

The incremental energy functional for each Voronoi cell element in equation (4.21) is modified for 
the asymptotic homogenization process as: 

n?   =   -JY±S;jklAatjAtTe
kldY-JYe<:A<r<dY + 

f   (<r£ + Aa-y • ne • (u1 + Au1) d8Y   -     f   (<r™ + A<r£m - <rEC - A<r£C) • nc • (u1' + Au1') ÖY 

- J    (<rec + A<r£C) • ncr • (u1"   +   Au1") 8Y + I (e + Ae)AatdY (4.23) 

where S-jkl is an instantaneous elastic-plastic compliance tensor. The last term in equation (4.23) 
incorporates the effect of macroscopic strains e in the microstructure. The stationary condition 
of IIe with respect to stress increment Aa\- yields as Euler's equations, the incremental form of 
kinematic relations 

4- + A4- = eij + Aeij + d(u}^U}) (4.24) 

where Au} is the microscopic displacement in equation (4.17). Stationarity of the total energy 
functional II = X^Lj Ilf with respect to displacement increments Au}, Au}' and Au}", result 
in the inter-element, interface and crack boundary traction reciprocity conditions respectively. 
The Voronoi cell finite element module is incorporated in a macroscopic analysis module with the 
interface being created by the homogenization procedure in [26, 27]. A displacement based finite 
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element code with plane strain QUAD4 elements with one-point reduced integration and hourglass 
control is used for macroscopic analysis. Material constitutive relations at each integration point 
of elements are obtained from homogenization of microscopic VCFEM results. Microscopic stresses 
a?-are averaged to yield macroscopic stresses S,-j. The microscopic VCFEM is also invoked to 
evaluate the homogenized elastic-plastic tangent modulus Eff by applying unit components of 
macroscopic strain. 

4.5    Computational Subdomain Level-0 in the Hierarchical Model 

Level-0 corresponds to macroscopic regions (Clio C &MAT(P)) 
m figure 4.2a, where deformation vari- 

ables like stresses and strains are relatively uniform in their macroscopic behavior. Scale effects are 
negligible and local constitutive relations may be derived from postulates of zero RVE volume in the 
limit and periodicity. It is assumed that macroscopic analyses with homogenized constitutive rela- 
tions are sufficient for these regions. Anisotropie constitutive relations with varying parameters are 
developed for continuum analysis of heterogeneous microstructures with elastic-plastic constituent 
phases. To account for details of microstructural morphology, the constitutive model is based on 
two scale analysis using the asymptotic homogenization method and microstructural analysis byn 
VCFEM. A continuum constitutive model can greatly enhance computational efficiency over two- 
scale analysis. 

4.5.1    An elastic-plastic constitutive model 

Various continuum constitutive models have been proposed, based on unit cell analyses of com- 
posite and porous microstructures. One parameter plastic potential functions with assumptions 
of anisotropy have been introduced in [32, 33] for composite materials, where the parameter is 
determined by least squares fitting of unit cell characteristic responses. Bao et. al. [34] have 
used the same hardening exponent for the composite as for the matrix material. A widely used 
continuum constitutive model for porous materials is that of Gurson [35], which has been modified 
by Tvergaard [36] with unit cell analysis to incorporate the effects of void growth and coalescence. 
Besides the limitations in representing actual microstructural heterogeneities, a number of these 
constitutive models do not adequately accommodate variations in constitutive parameters with 
evolving deformation and do not account for post-yield anisotropy. Terada and Kikuchi [37] have 
tried to overcome this by using the asymptotic homogenization to develop an extensive numerical 
response database in the strain space. Instantaneous overall composite properties are determined 
from discrete values of homogenized stress-strain values at points of this database. This approach, 
however leads to huge database to cover all possible deformation paths and requires solving an 
inordinately large number of RVE boundary value problems. Fish et. al. [10] have used the idea 
of transformation strain fields, introduced by Dvorak et.al [38], to develop a two point averaging 
scheme based on the mathematical homogenization theory with piecewise constant transformation 
fields. However, approximating the eigenstrains with low order polynomial functions may not be 
able to fully account for large gradients in stresses and strains between phases. 

Motivated by two considerations, a piecewise continuous elastic-plastic constitutive model with 
an anisotropic yield function is developed. The first is an accuracy consideration, in that it should 
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account for the microstructural morphology, e.g. spatial distributions, shapes, sizes and properties 
of the individual phases, phase interactions, as well as the evolving stress and strain fields. This can 
be achieved if the model is developed from detailed finite element analyses of the RVE (e.g. VCFEM 
analysis), subjected to a wide variety of loading conditions. The second is an efficiency consider- 
ation, since the creation of a prohibitively large numerical database with a very large number of 
numerical experiments is of no consequence. The efficient development of a constitutive model, 
accounting for underlying evolution of state variables, is accomplished by generating piecewise con- 
tinuous model parameters from data in a discretized strain space (see figure 4.4). Numerical data 
points in the strain space are systematically created through a sequence of computational RVE 
analyses subject to an ordered set of macroscopic strains and strain paths. The strain space in 
figure 4.4 is discretized into cubic elements, each containing 32 nodes or data points. From the 
computational RVE analysis, constitutive parameters like yield function coefficients and plastic 
work are generated for each nodal point. The constitutive relation at any point in the strain space 
are then obtained by interpolating nodal values using conventional shape functions. Elastic-plastic 
models developed in the ensuing sections are for plane strain assumptions. 

Linear Elasticity 

Orthotropic homogenized elastic material properties are obtained by asymptotic homogenization 
in conjunction with the VCFE analysis of the composite and porous microstructures from equation 
(4.19) as explained in [27]. With plane strain assumptions, three separate VCFE analyses are 
conducted, each corresponding to an independent component of the macroscopic strain {exx, eyy, 
exy}. The orthotropic elasticity tensor is stored for macroscopic analysis. 

4.5.2    Elasto-plasticity with anisotropic yield function 

The inclusion phase in composites are assumed to be linear elastic, while the matrix phase is 
assumed elastic-plastic for both composite and porous materials. In plane strain modeling, an 
assumption that the total plastic strain in the out of plane or 'third' direction is zero, is made. 
The yield function can then be described in terms of the macroscopic in-plane stress components 
(Y,xx,Y,yy and S^). The yield function for porous and composite are written using Hill's 1948 
anisotropic yield function [39, 33] in conjunction with the hydrostatic stress dependent models of 
the Tvergaard-Gurson [35, 36] as : 

_     C(£xx - -£yy)
2 + 3 S2 A/5(£M + EW)\ #-—vjm—a+*~*(T %wf )-1=0      <4-25> 

where exx,eyy,exy are the macroscopic in-plane strains, C(exx,eyy,exy,Wp) is a strain dependent 
yield surface parameter and Yf(Wp) is the flow stress in shear. For the composite materials the 
dependence of pressure on yielding is deemed negligible and the hydrostatic stress coefficient H 
is ignored. Coefficients C(exx,eyy,exy,Wp), Yf(Wp) and H are determined from computational 
experiments detailed next. The increment of plastic strain is obtained from the yield function $ 
by using the associated flow rule for hardening materials, i.e. e?- = Ä^-. 
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^O fljxxi^-'yyi^'xy) 

-• Loading Direction 

Cubic Elements 
for interpolation 

Figure 4.4: A exx — eyy — exy strain sub-space, discretized into cubic elements for interpolating 
constitutive model parameters. The nodal values of stresses and plastic work are numerically 
generated. 
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Coefficient Evaluation 

A. H and Yf(Wp) 

Computational exercises indicate that the variation of H with increasing hydrostatic loading is 
not significant. It is therefore assumed to be a constant for all load histories. This assumption 
is consistent with the Tverggard-Gurson models [35, 36], where H is determined in terms of the 
initial void volume fraction. The constitutive parameters H and Yf(Wp) are evaluated in a coupled 
manner by solving the microstructural RVE boundary value problems with two distinct loading 
conditions viz. (i) biaxial tension loading (Era; = T,yy = £%<*, "SXy = 0) and (ii) pure shear loading 
(T,xy = £s/i, Tixx = "Syy = 0). For load condition (i), equation (4.25) becomes: 

*(£M> EM> 0, Wp) = Hcosh (v^y^r j -1 = 0 (4.26) 

and for load condition (ii), it becomes: 

*(0,0,EM,Wp) = J^k_ + I-l = 0or Yj(Wp) = ^| (4.27) 

The values of H and Yj(Wp) are determined iteratively from equation (4.27) and further validated 
against equation (4.26). The steps are as follows. 

1. Solve a macro-micro boundary value problem with RVE homogenization, with incremental 
pure shear loading. Obtain macroscopic plastic work by averaging the the microstructural 
plastic work ( Wp = y^— fQ <7{je?dfi ) and plot the macroscopic shear stress as a function of 
plastic work Wp. 

2. Assume a starting value for H (e.g. 3*/o as in [35, 36]) and evaluate Yf(Wp) from equation 
(4.27). 

3. Solve a pure macroscopic boundary value problem with incremental biaxial loading, using the 
homogenized elastic-plastic constitutive relation and associated flow rule with yield function 
(4.25). 

4. Plot the exx — Hhyd and eyy — Yihyd curves for the entire history of biaxial loading. 

5. Solve a macro-micro boundary value problem with RVE homogenization with the same in- 
cremental biaxial loading as in the previous step. Plot the Zhyd - exx and E/^ - eyy curves 
for the entire history of loading. 

6. Compare the results of steps 4 and 5. If the two curves from both methods are within a preset 
tolerance everywhere, then the process is terminated and value of H in step 2 is accepted. 
Otherwise, the entire sequence is repeated with a different value of H. 

B.C{€ihWp) 

The coefficient C in equation (4.25) is found to vary considerably with evolution of plastic de- 
formation and examples of its variation with straining and plastic work are shown in figures 4.5. 
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Figure 4.5: Variation of the yield function coefficient C(exx,eyy,exy, Wp), (a) as a function of 9 or 
normal strains for different microstructures, (b) as a function of plastic work Wp. 

While it is assumed to be a function of the total strain and plastic work, its dependence on load 
history is assumed to be negligible. In the discretized strain space of figure 4.4, the value of a piece- 
wise continuous C at any point may then be obtained by interpolation from nodal values according 
to 

32 

C(exx,eyy,exy,Wp)= ^2Ca(Wp)Na(exx,eyy,exy) (4.28) 
a=\ 

where Ca are the nodal values and Na are shape functions for a 32-noded brick element. 

Generation of Discretized Strain Space and Nodal Parameters 
The nodal values of macroscopic stresses (E^, J]yy, Zxy) and the corresponding plastic work Wv are 
first evaluated at each nodal point in a subspace of the exx - eyy - exy space by solving incremental 
macro-microscopic boundary value problems with VCFEM and asymptotic homogenization. In 
this process, macroscopic strain increments are applied to the RVE subjected to periodic boundary 
conditions [26, 27]. Strain increments are applied along a radial line in the strain space, such that 
a constant ratio between strain components is maintained, i.e. Aexx : Aeyy : Aexy = 1 : tan9 : 
(1 + tan29)tan<p, where 9 and <f> are the angular coordinates in the strain space of figure 4.4. The 
flow stress Yj(Wp) at each node in figure 4.4 can be obtained from the shear stress-plastic work plot 
and equation (4.27). From the values of macroscopic variables (Ea.a.,Ew,Ejry,y/(Wr

p)) at a node 
corresponding to the end of an increment, the coefficient C(exx,eyy,exy, Wp) is calculated using 
equation (4.25). 
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From the symmetry conditions, only a quarter of the exx — eyy — exy strain space is considered 
for loading such that 0° < 0 < 180° in the exx — eyy plane and 0° < <j> < 90° outside of this plane. 
This is indicated in figure 4.4. This chosen subspace of the strain space is divided into 16 cubic 
brick element with 32 nodal points each. The location of elements in the strain space are selected 
to optimally account for the variations in C. These variations in C with the coordinate angle 
6 (location in the exx — eyy plane) and the plastic work Wp for the different microstructures are 
plotted in figure 4.5. The parabolic form of C in figure 4.5a is consistent with the quadratic term 
(Exx — Y*yy) in the yield function. The minimum values occur near 6 = 135° corresponding to a 
pure deviatoric state. The coefficient subsequently increases to account for the increase in plastic 
work in the yield function $. In figure 4.5b, the coefficient C as a function of the plastic work, 
which corresponds to the radial direction in the strain space, is plotted. The value of C stabilizes 
beyond a value of the plastic work, which is used as the outer boundary of the strain space envelope 
in figure 4.4. 

4.5.3    Numerical implementation of the constitutive model 

The elastic-plastic constitutive model for composite and porous materials is derived from the 
anisotropic yield function (4.25) with associated flow rule and isotropic hardening. In an incre- 
mental form, the stress increments AS,-j are related to elastic increments of strains (Ae^ - Aep

kl) 
admitting additive decomposition, as 

AStj = E%kl(Aekl - Aep
kl) (4.29) 

where i?tjW is the homogenized elasticity tensor. Using associated flow rule, components of the 
plastic strain increment are obtained as: 

Aeri = A^ (4.30) 

Elimination of the flow parameter AA from the above equations results in the two equations 

&^(jy-^GIB=°   •    ^(jy-Ae;B(£)=0 («I) 
These equations are solved using the backward Euler integration method, with gradients evaluated 
at the end of the increment. With known increments of strain, the resulting set of equations (4.31) 
together with the yield function (4.25) are solved iteratively by using the Newton-Raphson method. 
The stress increments are obtained by the following steps. 

1. Initialize values of AT,XX, AY,yy and AE^. 

2. Calculate the gradient (^-J of the yield function and solve for the increments of plastic 

strain Ae*,., AePyy and AePy from equations (4.29) and (4.31). Update the stresses and 
plastic work using the relation AWP = ZxxAep

xx + E„„ Ae^ + S^Ae^. 

3. If $ < toh and correction to plastic strain increment £e?- < tol2, where toll and tol2 are 
prescribed tolerances, then stop. Otherwise go to step 2. 

The parameter C is then obtained from the interpolation equation (4.28). 
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4.5.4    Numerical examples with the continuum constitutive model 

The elastic-plastic constitutive model is validated by comparing the results of macroscopic numerical 
simulations with those generated by macro-micro scale analysis using asymptotic homogenization. 
Examples are conducted for both composite and porous materials with different microstructure 
morphologies, viz. different shapes, sizes and spatial distributions of the heterogeneities. 

Analysis of Composite Microstructures 

Six microstructural KVE's of 20% Vj Alumina-aluminum composite with Alumina fiber in alu- 
minum matrix, as shown in figure 4.6, are analyzed. The RVEs are classified as: 
(a): Square edge pattern with a circular inclusion (Cl) 
(b): Square edge pattern with an elliptical inclusion (aspect ratio f = 3) (C2) 
(c): Random pattern with 25 identical circular inclusions (C3) 
(d): Horizontally aligned random pattern with 25 identical elliptical inclusions (C4) 
(e): Randomly oriented random pattern with 25 identical elliptical inclusions (C5) 
(f): Random pattern with 17 random shape and size inclusions (C6) 

The material properties for the elastic Alumina fiber are: 
Young's Modulus (Ec)= 344.5GPa, Poisson Ratio (vc)= 0.26; 
and for the elastic-plastic Aluminum matrix are: 
Young's Modulus (Em)= 68.3 GPa, Poisson Ratio (i/m)=0.30, Initial Yield Stress (Y0): 55 MPa, 
and Post Yield hardening law: aeqv = Y0 + 2.08ef^. 

The RVEs are subjected to four different types of loading viz. 
• LI: Pure shear loading with increments(ASra = AETO = 0, AT,xy = AE) 
• L2: Uniaxial tension loading with increments (AHXX = AE, AEV!/ = AT,xy = 0) 
• L3: Biaxial tension loading with increments (AE^ = AE^ = AE, AE^ = 0) 
• L4: Biaxial tension-compression loading with increments (AE^ = -AE^ = AE, AE^ = 0) 

The stress-strain response of the six composite microstructural RVEs with the four loading 
conditions are conducted and the results for simple tension (LI) are depicted in figure 4.7. The 
results by the constitutive model and two-scale asymptotic homogenization approach are generally 
found to agree very well for the entire range of loading upto fairly high level of straining. The 
only discrepancy is found with the biaxial tension loading condition (L3), for which the devia- 
tion strains are shown in table 1. However the deviations occurs at high strains levels, for which 
the stresses are nearly twice the matrix yield stress. It is important to note that the deviation 
of continuum model response from the two-scale asymptotic homogenization response can be used 
as a signal for switching from the former to the latter type of analysis in a multiple scale simulation. 

As an example of a structural analysis with the two approaches, a square plate with a square 
hole is solved with tension loading on two opposite faces. A quarter of the plate with symmetry 
and loading conditions is shown in figure 4.8a. A total traction of 55 MPa is applied in 10 equal 
increments. The material is a 20 % Vf Alumina-aluminum composite with the microstructural 
RVE consisting of 15 identical circular inclusions dispersed randomly in the matrix (figure 4.8b). 
The material properties are the same as in the previous example.  Comparison of the results are 
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Figure 4.6: Microstructures with different shape, size, orientation and spatial distribution, for 20% 
volume fraction composite (C1,C2,C3,C4,C5,C6) and porous (V1,V2,V3,V4,V5,V6) materials. 
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Figure 4.7: Comparison of the stress-strain results in the composite for the uniaxial loading test 
by (i) macroscopic analysis with the homogenized constitutive model and (ii) two-scale analysis 
with asymptotic homogenization model for: (ajPci, (b) C2, (c) C3, (d) C4, (e) C5 and (f) C6 
microstructures. 
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Figure 4.8: (a) Finite element model for a quarter of the square composite plate with square hole 
and (b) the VCFE model of the microstructural composite RVE. 

made through contour plots of the macroscopic stress T,xx (shown in figure 4.9) and macroscopic 
plastic work Wp (not shown). The figures reveal that at all locations the difference in the two 
approaches is less than 1%. However, the computational efficiency of the macroscopic analysis 
with the continuum constitutive model is far superior than the two scale analysis. The scale up 
in efficiency for this problem is approximately 75000%, and is therefore very desirable when only 
macroscopic results are of interest. 

Analysis of Porous Microstructures 

The six microstructural RVEs are analyzed again for porous materials, with voids replacing the 
inclusions in figure 4.6. The material considered is an aluminum alloy with 20% void volume 
fraction and the following elastic-plastic properties: 
Young's Modulus (Em)= 68.3 GPa, Poisson Ratio (um)= 0.30, Initial Yield Stress (Y0)= 55 MPa, 
and Post Yield hardening law: aeqv = Y0 + 2.08e§^. The same four load histories (L1,L2,L3,L4) 
are applied. An important difference between the composite and porous microstructures, is that 
in the latter plastic strain localization in small regions is a common occurrence depending on the 
void morphology and the nature of loading. Such nonhomogeneous distribution of plastic strains 
is a major source of discrepancies between responses by the two approaches and act as 'limiters' 
for the range of application of the continuum model. Microstructures with homogeneous and 
nonhomogeneous distributions of plastic strain are shown in figure 4.10. For the microstructure 
VI (square edge pattern with a circular void) the strain distribution is quite uniform in pure 
shear loading, while for the microstructure V2 (square edge with an elliptical void) there is intense 
localization with narrow ligaments. Consequently the continuum model ceases to be effective. 

As in the case with composites, the main challenge for the homogenized constitutive model 
is encountered during simulations with biaxial tension loading, i.e.   (AS** = AT,yy = AS6 and 
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Figure 4.9: Comparison of macroscopic stress (EXx) contours in composite material with (a) the 
homogenized constitutive model and (b) two-scale analysis with asymptotic homogenization. 

AEsy = 0). The first term in the yield function (4.25) drops out for this loading and the model 
delivers the same amounts of plastic strains in the x and y directions. Due to the lack of anisotropy 
in the hydrostatic term in the yield function, the continuum model is effective only for those 
microstructures that exhibit near-isotropic plastic behavior for this loading. Microstructures V2 
(square edge with elliptical void) and V4 (horizontally aligned elliptical voids with random spatial 
distribution) shows very different strain responses for each direction with biaxial loading. Thus the 
continuum constitutive model is largely ineffective for these RVEs. The microstructures V5 (ran- 
domly oriented identical elliptical voids with random spatial distribution) and V6 (random spatial 
distribution with random shape and size) also show significant plastically induced directional effects 
and the constitutive models are therefore restricted to the elastic range. The list of performance 
and strain ranges of all the microstructures with the different loadings are given in table 2. The 
microstructures VI and V3 exhibit relatively isotropic responses and yield satisfactory agreement 
between responses by the constitutive model and the two-scale asymptotic homogenization. Com- 
parisons of stress-strain responses for biaxially and uniaxially loaded RVEs are made in figures 4.11. 
These show very good agreement. The RVEs V2 and V4 exhibit intense localization early on in 
the straining, while the RVEs V5 and V6 exhibit marked anisotropy with biaxial loading. Plastic 
flow predictions for these RVE's with the continuum model are therefore not reliable. 

4.6    Computational Subdomain Level-1 in the Hierarchical Model 

The level-1 regions (Cln C £IMAT(P)) in the computational domain are identified by locally high 
gradients of macroscopic variables e.g. stresses, strains strain energy etc.. These are generally in- 
dicators of imminent damage evolution or localization in the microstructure. In these regions, the 
assumptions of macroscopic uniformity and statistical periodicity of the RVE are still assumed to 
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0>) 
Figure 4.10: Contour plot of the microscopic plastic strain V in the voided microstructures under 
pure shear loading condition, for (a) VI (b) V2 microstructures. 
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Figure 4.11: Comparison of the stress-strain results in the porous material for (a) bi-axial ten- 
sion for VI microstructure (b) bi-axial tension for V3 microstructure, (c) uniaxial tension for VI 
microstructure and (d) uniaxial tension for V3 microstructure. 
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Figure 4.12: Creating extended microstructure; (a) a mesh of macroscopic elements with an under- 
lying microstructure of repeated RVEs, (b) the extended microstructure by Voronoi tessellation. 

hold. However, these assumptions may cease to hold soon, with additional deformation. Thus, in 
concurrence with macroscopic simulations, computations are necessary at the microstructural scale 
to monitor the initiation and growth of damage and instabilities. The EVE response for level-1 
elements is explicitly calculated using asymptotic homogenization and VCFEM analysis. In its 
computational implementation, a sequence of finite element analyses are executed as follows: 
(a) Microstructural analysis by VCFEM with unit strains or increments and periodicity boundary 
conditions to generate homogenized material parameters (E(jkl), 
(b) Macroscopic analysis of structural components with homogenized coefficients, 
(c) Microstructural analysis by VCFEM with imposed macroscopic strains or increments and period- 
icity boundary conditions for simulating the evolution of microscopic stresses, strains (<r£,ec) etc. . 
The computational requirements of this level are considerably higher than that for level 0, since 
at each integration point in the macroscopic computational mesh, a complete microstructural RVE 
problem has to be solved twice. It is also critical that this level be discontinued once the microstruc- 
tural damage or instability evolved beyond pre-determined threshold values. 

4.7    Computational Subdomain Level-2 in the Hierarchical Model 

Level-2 regions (figure 4.2b) are classified as those with severe microstructural nonuniformities in 
the form of evolving damage. This results in loss of statistical periodicity of the assumed RVE and 
these regions may be identified with ^MAT(nP) in equation (4.5). In the computational model, the 
level-2 elements (fi;2 C &MAT(nP)) materialize from the microstructure of level-1 elements. It is 
assumed that prior to this transition, the level-1 elements have been refined to reach sufficiently high 
spatial resolution. In fy2, the macro-micro model of level-1 switches to a completely microscopic 
model. 
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The method of generating the level-2 microstructure in each element is illustrated in figure 
(4.12). An extended microstructure is first created by repeating RVEs in succession, to cover the 
entire region of the macroscopic level-1 elements in transition to level-2. In equation (4.7), a local 
non-periodic region is created as : 

YMAT(nP) = UJV~Y,J^ (432) 

where Y'k corresponds to the RVEs in a periodic domain, adjusted for microscopic evolution. This 
is then overlayed by the macroscopic elements to accurately encase the level-2 region with clearly 
delineated boundaries. Each level-2 element now contains a heterogeneous material distribution 
(Y|) that is defined as the intersection of the non-periodic material region Yfc ^np' and the 
element domain ftjj 

ye = YMAT(nP) p ^ (433) 

This region is subsequently tessellated into a mesh of Voronoi cell elements (figure 4.12b). Trac- 
tion continuity between level-2 microstructural region and neighboring level-O/level-1 elements is 
incorporated through a layer of transition elements. 

4.7.1    Damage criterion for particle cracking in level-2 

The level-2 VCFEM modeling consist of brittle reinforcing particles and a ductile matrix material. 
For the brittle particulate materials, microstructural damage initiation is assumed to be governed 
by a maximum principal stress based criterion. In this criterion, a crack is initiated when the 
maximum principal stress in tension exceeds a critical fracture stress crcr at a point. In the compu- 
tational procedure, complete particle splitting is assumed to occur in the form of an elliptical void, 
normal to the principal direction, as soon as the principal tensile stress reaches acr. In the case 
of particle splitting, the crack tip extends nominally into the matrix. In the incremental compu- 
tational procedure, more than one point may exceed the critical acr value during increment. The 
location of a single crack is determined by a weighted averaging method as: 

E* 
•^damage — 

E» v
c

r(x,y) 
ccr 

v^ <*?(*>») z^ ercr 

y^ma3e = ^^-   V    [aftx, y) > crcr] (4.34) 

where aj(x,y) corresponds to all values of maximum tensile principal stress larger than acr in the 
particle. The crack is oriented at right angles to the principal stress directions at (xdamage, ydamage) 
and extends to the interface on both sides. 

4.8    Coupling the Levels in the Hierarchical FEM 

While level-0 elements (El0 € ftj0) and level-1 elements (En <E ftji) are coupled naturally through 
the familiar assembly process, the interfacing of level-2 (Ei2 € ft/2) elements with either of the first 
two requires more attention. The mismatch in the number of boundary nodes in these elements 
necessitate the introduction of transition elements (Etr € fi/2), acting as buffer zones as shown in 
figure 4.13. Both E\2 and Etr elements employ VCFEM for setting up the element stiffness matrices 
and load vectors. The entire computational domain is thus comprised of 

fi£ = {ft/o U ün U fi,2 : ül0 = uE» £«,; ft/i = UJgf^u; A/2 = u£?i^2 U ^i\Etr} 
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Figure 4.13: Interfaces between the levelO/1 EIQ and En elements, transition Etr elements and the 
level-2 En elements. 

for which the nodes are differentiated as (see figure 4.13): 
(i)   (nd 2 ) or internal level-2 Voronoi cell element nodes that are not on any interface or boundary, 
(ii)  (nd'2'2) or Voronoi cell element nodes on the E^-E^ interface, 
(iii) (nd/2/,tr) or Voronoi cell element nodes on Ei2-Etr interface, 
(iv)  (nd/01/*r) or nodes on E^^-Etr interface that belong to Eio and En elements, 
(v)   (ndäC) or Voronoi cell element nodes on Ei0/rEtr interface that do not belong to EIQ and En 
and need to be statically condensed. In an incremental analysis for elasto-plasticity, the principle 
of virtual work for the computational domain at the end of the n-th increment may be written 
as a scalar valued function G in terms of variables at different levels as: 

Gn+1(Au,6u)   =    f   E«(un + Au)?^<ffl - /    jMidtt 

+    I   Ey(un + Au)^dfi - /     fiSuidü 

+    I   CTi,(un + Au)^-dÜ - [    JiSuidQ, 
Jn?*1 dxj Jn?+* 

-    I    USuidT- f    USuidT- I    USuidT (4.35) 
Mo+1        Mi+1        M**1 

In an iterative solution process with the Newton-Raphson method, a consistent linearization by 
taking the directional derivative of Gn+1 along incremental displacement vector Au, yields the 
tangent stiffness matrix.   For the i - th iteration, the assembled equations have the following 
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structure. 
#»0/1,10/1 

K12,10/1 

J(I0/l,l2 AC/'0/1 V _ / AF'0/1 

AC/'2S   f " 1    AF'2 (4.36) 

Here AC/'0/1 corresponds to displacements at nodes (nd'0/1) that belong to elements Ei0 and £;i 
in the computational region £>/0 U fi/j as shown in figure 4.13. It should be noted that they also 
include nodes at the interface of elements Ei0/En and elements Etr. The displacements AUl2B on 
the other hand corresponds to nodes (nd'2/'r) on the interfaces of elements Etr and elements E& or 
to nodes (nd 2'2) on the interfaces between two E^ elements. Contributions to the stiffness matrix 
[K] and load vector {F} for elements in üi0 U Q^ may be obtained as 

{Kiajß 
l0/l,10/l\i _   I 

•I 
dxi deki  dxi 

G 

dtt 

(#7- L fiN°dto + yrr.+i ur"+1 

'1 

uN°dr 
Jn? ,0

+1unj'1
+1 

dNG 

dxj 

a,ß correspond to the node numbers and Na are the shape functions of macroscopic elements. 
For the elements EtT and E\2 belonging to fi/2, contributions to the stiffness matrix and load 
vectors are obtained by VCFEM calculations, together with static condensation. The transition 
element facilitates continuous variation from microscopic to macroscopic elements without jumps 
or discontinuities. On the Ei0/vEtr interfaces, this is accomplished by constraining displacements 
at nodes ndsc to conform to displacement interpolation of the adjacent EIQ or En elements. The 
constraints at the nodes ndsc are applied in terms of displacements at nd'01/tr as 

{AC/SC} = [Q] {AUm/tr} (4.37) 

where [Q] is the constraining matrix. For bilinear QUAD4 level-0/1 elements, each row of [Q] 
consists of the inverse of the distance of the constrained node to the corner nodes. The interfaces 
with the E\z elements, i.e. the Ei2-Etr interfaces are treated in the same way as E\2-E\i interfaces. 

The displacements AUl2B in equation (4.36) correspond to those at the boundary nodes (nd'2/2, 
nd'2/tr, nd'01/<r and ndsc) of level-2 elements that contain the microstructural VCFE model. To 
account for the contribution of the internal nodes (nd'2/), it is therefore necessary to use static 
condensation and recovery process for representing the VCFEM displacement solutions at the 
internal nodes AUm in terms of the displacements at boundary nodes AUl2B, where 

{ AUl2B } = < 
AC/'2/2 

AC/'2/"" 

AC/'01/'r 

AUSC 

I 

0 
o 
0 

0 
/ 
0 
0 

0 
0 
0 
Q 

AC/'2/2 

AC/'2/<r 

AC/'01/" 
(4.38) 

where [I] and [Q] are the identity and constraint matrices respectively.   In a VCFEM solution 
process the stiffness matrix and the load vector may be partitioned accordingly as 

J{12B,12B 

J(I2I,12B 

gl2B,M 

J(12I,12I 
AU12B 

AC/'27 H AF12B 

AF121 (4.39) 
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Static condensation of the internal degrees of freedom yields 

K12B,12B\  _  \K12B,12I\  \Kl2J,l2l\ _1 [" j^/27,/2ßj    J ^Jjl2B\  _ ^pl2B\      \R12B ,l2l\  \KM,l2l\ _1 |^_f'2/| 

(4.40) 
These stiffness matrices and load vectors are then used in the assembly process of equation (4.36). 

4.9    Adaptation Criteria for Various Levels 

It is evident that appropriate criteria need to be established for transitioning the computational 
subdomains from one level to another. In addition to level transitions, element refinement by h- 
adaptation is also executed in level-0 and level-1 regions for two reasons. The first is to identify and 
reduce any suitably chosen 'error measure' in the computational model. Secondly, the h-adaptation 
enables the computational model to 'zoom in' on regions of evolving localization due to microscopic 
non-homogeneity. It reduces the disparity in the macro- and micro- scale elements by successive 
refinement of macroscopic elements in the critical regions as shown in figures (4.2a,4.16). The cri- 
teria used for element refinement and level transition are delineated below. 

• Level 0/1 h-adaptation may be executed based on an error measure may be defined as 

Ee = ||/(u - uh)|| (4.41) 

where u is the true solution, u^ is its finite element approximation, / is any appropriate function of 
deformation e.g. energy, stresses, strains etc., and || • || denotes a norm of the function. Substantial 
work on h-method of mesh refinement e.g. [40, 41, 42] have proposed various forms of / and norms 
to optimize the computational effort and improve reliability. In this work, elements are subdivided 
based on an element level parameter defined as 

(jr\    - Jl/(uh)ll UAOs ( e)cr ~ q^7WT (    } 

where (Ee)cr corresponds to a threshold element parameter, above which the element needs to be 
refined and qi is a prescribed quality index. ||/(uh)|| = Yl^=i ll/(uh)l|e is the sum of element norms 
of any function for the entire computational domain and NE is the number of elements. In this 
work H/^uiJIle is taken to be the maximum difference in plastic work with neighboring elements. 
Accordingly a value of qi=l.b is found to be satisfactory for this study. 

• Level-0 to level-1 transition of E\Q elements takes place in accordance with criteria based 
on macroscopic variables e.g. (17, e) in the continuum model that are related to critical micro- 
scopic variables. Additionally, this transition is activated when the continuum level model in section 
4.5.1 starts to digresses considerably from the results of two-scale homogenization. Different criteria 
are used for composite and porous materials. 
A. For composite microstructure with inclusions: 

(S7) > Ecr = r * a"    and/or    (S** + £«/) > ^ (443) 

Here Ej is the maximum principal stress in Et0, Scr is a critical stress that is a pre-determined 
fraction r of the critical fracture stress {a") for microstructural inclusions.   The fraction r is 
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selected to be | in this study. The second condition is established since the earliest digression from 
the homogenization results is observed for biaxial loading, and ££r established from the results of 
section 4.5.4. 
B. For porous microstructure with voids: Strain based criteria are deemed more important in the 
case of damage in porous materials and hence transition is activated when 

(e*) > (cX = r * {(?)"    and/or    (e** + ew) > eg (4.44) 

where ep{= J^jtfj)1S ^e macroscopic effective plastic strain in Ei0 and (ep)cr is a pre-determined 
fraction r of a suitably assessed high microstructural plastic strain (ep)cr. Again eg is established 
from the limiting values of biaxial strain in section 4.5.4. 

• Level-1 to level-2 transition of En elements occur when a sufficiently high spatial resolu- 
tion is attained by h-refinement and when the RVE is deemed to be on the verge of significant 
damage evolution. The adaptive criteria, which monitor the transition from elements En to £72 
are prescribed in terms of topological evolution of microscopic damage as: 
A. For composite microstructure with inclusions: 

NDP 
Rdamage =     „p    > Rcr (4.45) 

B. For porous microstructure with voids: 

Rdamage =      . g    > Rcr (4.46) 

where Rdamage is the ratio of the number of damaged inclusions (NPD) to the total number of 
inclusions (NP) for composites. For porous microstructures, it is the ratio of the damaged area 
corresponding to regions which have high plastic strains to the total RVE area. Rcr is a prescribed 
critical ratio and varies from problem to problem. 

4.10    Numerical Examples with the Adaptive Multilevel Model 

Numerical examples are solved to understand the effect of structural geometry and microstructural 
morphologies on the macroscopic and microscopic responses. In all examples, the inclusions are 
assumed to be linear elastic which can crack by the principal stress criterion and the matrix is elastic- 
plastic. In the first example, a RVE consisting of a single circular inclusion is modeled by level-1 
and level-2 elements under applied uniaxial tension loading. In the first case the En macroscopic 
element is coupled with the microscopically periodic RVE by asymptotic homogenization, while in 
the second case, the tension load is directly applied on one edge of the Voronoi cell element Et2 model 
of the RVE. The loading is continued beyond the level of inclusion cracking. This is represented 
by the loss of stress carrying capacity in the averaged stress-stain plot of figure 4.14a. Though the 
response is similar in the initial elastic phase, it diverges with the onset of plastic flow. The damage 
occurs earlier in the level-1 element due to the additional constraint of periodicity. The contour 
plots of inclusion maximum principal stress, normalized by the critical stress 0er, are compared 
at a macroscopic strain 2.1% in figure 4.14. This is just before cracking by the level-1 model. A 
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considerably lower stress level is seen for the level-2 model. Such over-estimation of stresses with 
periodicity boundary condition near free boundaries necessitate the use of the proposed multi-level 
models. 

4.10.1    Effects of inhomogeneity size (Scale effect) 

Neglecting scale effects, that reflect the actual size of microstructural constituents, is a charac- 
teristic of homogenization with assumptions of statistical periodicity of a vanishingly small RVE. 
While elements EIQ and En conform to this restriction, the level-2 elements E\2 in this work depict 
the actual size of the microstructure through the multi-level coupling and hence scale effects prevail. 

In this example the effect of particle or void size on the evolution of damage is investigated. The 
two different microstructural RVE's considered in figure 4.15b (i and ii) have identical distribution 
(square edge) and same particle or void area fraction of V - f = 20%. But the RVE sizes are 
different in that, the size of the smaller RVE(i) is 0.5mm x 0.5mm while that of the larger RVE(ii) 
is 1mm x 1mm. The macroscopic structure is a square plate with a square hole, for which the 
initial level-0 mesh with dimensions is shown in figure 4.15a. Only a quarter of the plate is modeled 
from symmetry considerations. The smallest size of macroscopic element allowed in this analysis 
by h — adaptation is set to 1mm. Thus the Ei2 elements contain only one element in the VCFEM 
model for the larger RVE(ii) but four elements in the VCFEM model for the smaller RVE(i). The 
material properties for both composite and porous materials are as follows. 
Aluminum matrix (Elastic-Plastic):  Young's Modulus (£m)=68.3 GPa, Poisson Ratio (i/7n)=0.30, 
Initial Yield Stress (Y„)= 55 MPa, and Post Yield hardening law: aeqv = Y0 + 2.08epJqv 

Alumina particle (Elastic): Young's Modulus (Ec)= 344.5GPa, Poisson Ratio (vc)= 0.26, Critical 
particle cracking stress (crcr)=0.3GPa 
The load is applied in 20 equal increments upto a total displacement of 1 mm as shown in figure 
4.15a. For the composite microstructures, figure 4.16 depicts the evolved macroscopic and level- 
2 computational domains at the end of loading stages. The level-0, level-1, level-2 elements are 
shown in white, grey and black respectively for the adapted macroscopic mesh in 4.16a and b. 
The evolution of the levels and mesh with h-adaptation is provided in table 3. The effect of the 
microstructure size becomes more pronounced with increasing deformation. A larger level-2 domain 
(29 macroscopic elements) with a smaller level-0 domain is evidenced for the smaller RVE(i). The 
effect of RVE size on the pattern of particle cracking is very significant. The level-2 region shows 
24 cracked particles for the RVE(i) as opposed to 6 cracked particles for the RVE(ii). The path of 
evolution of cracked particles is quite different for the two models. For the RVE(ii), the aggregate 
microscopic cracks is found to propagate perpendicular to the macroscopic loading direction and 
all the microcracks have the same orientation as the chain or macrocrack. For the smaller particles 
in RVE(i), the chain of microcracks or the macrocrack is observed to move at 45° to the loading 
direction with individual microcracks predominantly at 90° to the loading direction. 

The contour plots of macroscopic and microscopic plastic strain distribution at the final loading 
stage are shown in figures 4.17 and 4.18 for the two microstructures. The macroscopic strain distri- 
bution for both models shows higher strain concentration at the corner of square hole with increased 
loading. While the macroscopic strains are not very different for the two RVE's, significantly larger 
local plastic strains are seen in the level-2 microstructure of RVE(i).  A better representation of 

62 



4.0 

3.5 

0.0 —1 1_ 

0.0     0.5     1.0     1.5     2.0     2.5     3.0     3.5     4.0     4.5     5.0 
Axial strain(%) 

(a) 

Max.- 

IPlililP 

1.000E+00 

- 9.600E-01 

9.200E-01 

- 8.800E-01 

Min. 

■II - 8.400E-01 

8.000E-01 

(b) (c) 

Figure 4.14: (a) Macroscopic axial stress-strain plots for a single EVE in tension modeled by level-1 
and level-2 elements; Maximum principal stress distribution in the inclusion by (b) level-2 element 
and (c) level-1 element. 
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Figure 4.15: (a) A quarter of the level-0 starting macroscopic model of a square plate with a square 
hole, (b) four different microstructural RVE's for the plate model. 
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Figure 4.16: Macroscopic three level evolved mesh for the composite material at the end of the 
loading cycle for (a) the larger RVE (ii) and (b) smaller RVE (i); the corresponding level-2 region 
with the (c) the larger RVE (ii) and (d) smaller RVE (i). Level-0 is with white elements, level-1 is 
with grey elements and level-2 is with black elements. 
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Figure 4.17: Contour plot of plastic strain ep for the composite square plate: (a) the macroscopic 
averaged strain and (b) the level-2 microscopic strain at the critical region for the larger EVE (ii) 
model. 

this difference is seen in the graphs of figures 4.19 and 4.20. The macroscopic (averaged) stress T,xx 

history at the critical corner in figure 4.19 does not indicate significant difference and hence exhibits 
little scale effect. The stress drops in this figure correspond to particle damage. The histogram 
of the evolution of particle cracking however shows a considerably different pattern and a much 
higher rate of cracking for RVE(i). 

The same problem is solved for porous microstructures with the two sized RVE's, but with a 
total displacement of 0.4mm. The evolved levels and meshes in the computational models at the 
end of loading are shown in figures 4.21a and b and the corresponding level-2 microstructures in 
figures 4.21c and d. The evolution of the computational domain is also charted in table 4. It 
is interesting to note that the difference in response for the two RVE's is insignificant this this 
case. This may be attributed to lack of matrix damage or softening in the model. The plastically 
hardening matrix does not trigger adequate difference in the adaptation criteria as the particle 
cracking does for composites. A larger level-1 domain opens up with the adaptation criteria for 
elements which appear to be on the verge of strain localization, but subsequently do not make the 
transition to level-2. The contour plots of macroscopic and microscopic plastic strain distribution 
in figures 4.22 and 4.23, show similar macroscopic strain distributions, but higher strains for the 
microscopic model with smaller porosity RVE(i), due to the proximity of voids. This again shows 
the scale effect on the solution. 

4.10.2    Homogenization vs. multi-level simulation 

The effect introducing level-2 elements on both macroscopic and microscopic response is studied 
by comparing a pure level-1 simulation of the square composite plate in the previous example with 
a multi-level simulation. The results shown are for the larger particles in RVE(ii). The figure 4.24 
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Figure 4.18: Contour plot of plastic strain «? for the composite square plate: (a) the macroscopic 
averaged strain and (b) the level-2 microscopic strain at the critical region for the smaller RVE (i) 
model. 
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Figure 4.19: The evolution of Y,xx at the corner node of square hole for the two microstructures. 
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Figure 4.20: Histogram of the number of damaged particles as a function of straining. 

shows the microstructure near the inside corner by the two models at the end of loading. The boxed 
RVE's in figure 4.24a symbolize their periodic repetition. The periodicity constraint results in a 
considerably large portion of the microstructure being damaged for the homogenized simulation. 
The direction of the damage evolution indicated by the homogenized model is also different from 
the level-2 simulations. The stress Y,xx along the section A-B is plotted in figure 4.25 to evaluate 
the effect of homogenization on stress concentrations near the corner and free edge. The two 
models behave similarly upto the neighborhood of the corner. While the multi-level model predicts 
a higher peak near the corner, it subsides considerably to meet the traction free edge conditions. 
The corresponding microscopic level-2 stress variations for the multi-level model are shown in the 
inset. 

4.10.3    Effect of heterogeneity distribution and shape 

To illustrate the influence of particle distribution on the macro-microscopic damage response, two 
RVEs are selected with same volume fraction (20%), size (1.0mm) and number of particles (25). 
One has a hardcore distribution (figure 4.15b (iii)), which is a random distribution with a minimum 
permissible distance between particles, while the other has one cluster in a hardcore background. 
Proximity of particles within the cluster is known to initiate damage in discrete microstructures. 
The starting macroscopic mesh is the same as in the previous examples and a total displacement 
of 0.55mm is applied on the edge in equal increments. The smallest allowed size of macroscopic 
elements by h-adaptation is set to 1mm such that each £72 element consists of one RVE. 

The evolved macroscopic models for the two RVE's, at the finish of the loading cycle, are shown 
in figures 4.26a and b.   The level-2 region (black) for the clustered RVE is larger than that for 
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Figure 4.21: Macroscopic three level evolved mesh for the porous material at the end of the loading 
cycle, for (a) the larger RVE (ii) and (b) smaller RVE (i); The corresponding level-2 region with 
the (c) the larger RVE (ii) and (d) smaller RVE (i). Level-0 is with white elements, level-1 is with 
grey elements and level-2 is with black elements. 
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Figure 4.22: Contour plot of plastic strain <? for the porous square plate: (a) the macroscopic 
averaged strain and (b) the level-2 microscopic strain at the critical region for the smaller RVE (ii) 
model. 
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Figure 4.23: Contour plot of plastic strain eP for the porous square plate: (a) the macroscopic 
averaged strain and (b) the level-2 microscopic strain at the critical region for the smaller RVE (i) 
model. 
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Figure 4.24: A comparison of the microstrnctntal evolution near the inside corner by (a,) 
level-1 analysis and (b) adaptive multi-level analysis. 
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the hardcore KVE. Within the E12 elements, only one element for the hardcore distribution expe- 
riences particle damage as shown in figure 4.26d. However, several E\2 elements for the clustered 
microstructure exhibit particle damage, mainly within the cluster (figure 4.26e). While the macro- 
scopic averaged plastic strains show very little difference for the different microstructures in figures 
4.27a and 4.28a, the microscopic plots in figures 4.27b and 4.28b clearly depict the influence of 
distribution. Much higher levels of effective plastic strain values are observed within the cluster, 
compared to significantly lower levels in the hardcore RVE. Figure 4.30 shows the and evolution 
of macroscopic stress Y,xx at the corner of the square hole and the number of damaged particles 
as a function of straining. The stress drops to lower values for the clustered RVE due to a larger 
damage microstructure. More than twice the number of particles are damaged for the clustered 
case as shown in the histogram. 

To investigate the influence of shape, a RVE (see figure 4.15b (iv)) with the same volume fraction 
(20%), size (1.0mm) and number (25) is considered. The particles are elliptical with aspect ratio 
3.0 and randomly distributed and oriented. The evolved macroscopic model in figures 4.26c shows a 
larger level-2 region compared with other two microstructures, with several E12 elements exhibiting 
particle damage. The much larger number of cracked particles is also observed from the histogram 
of figure 4.30b. For this case, both macroscopic and microscopic plastic strains in figure 4.29 are 
also considerably larger. The macroscopic stress Y,xx shows a larger drop due to the increased 
damage in the microstructure. 

4.10.4    A heterogeneous plate with a macroscopic holes 

A different macroscopic domain, viz. a plate with periodically repeated square diagonal array of 
circular holes is considered in this final example. The plate is incrementally loaded using prescribed 
displacement on the top and bottom surfaces to a total extension of 0.15 mm. Due to periodicity 
and symmetry, only a part of domain is modeled as shown in figure 4.31. The radius of the circular 
holes are 50mm for the 100 mm x 100 mm square plate as shown in figure 4.31. The microstructural 
RVE is a 20% volume fraction 0.4 mm x 0.4 mm square region with a single circular particle. The 
same material properties as in the previous example are used with the only exception being that 
the critical particle cracking stress acr = 0.2 GPa. 

The adapted multilevel computational domain is shown in figure 4.32 and the number of el- 
ements in each levels with increasing are tabulated in table 5. The level-2 elements are created 
along a clear path connecting the holes due to localization by particle cracking. Extended portions 
of the damaged microstructure in level-2 regions are shown in figure 4.32. The macroscopic plastic 
strain contour in figure 4.33a gives an indication of 'hot spots' of evolving damage near the central 
region. The microscopic strain plots in figure 4.33b show a large fraction of particles cracked and 
may be interpreted as the initiation of localization to cause failure between the holes. 

4.11    Conclusions 

In this work, an adaptive multi-level computational model is proposed to (a) concurrently predict 
the evolution of stresses and strains at the structural and microstructural scales and (b) to track 
the incidence and propagation of microstructural damage. The microstructural analysis is con- 
ducted with the Voronoi cell finite element model (VCFEM) for elastic-plastic constituents with 
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Figure 4.26: Macroscopic three level evolved mesh for the composite material at the end of the 
loading cycle for (a) hardcore distribution with circular particles, (b) clustered distribution with 
circular particles, and (c) hardcore distribution with elliptical particles; the corresponding level-2 
microstructures for (d) hardcore (e) clustered and (f) elliptical RVE's. 
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Figure 4.27: Contour plot of plastic strain ep for the composite square plate: (a) the macroscopic 
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model. 
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Figure 4.28: Contour plot of plastic strain ep for the composite square plate: (a) the macroscopic 
averaged strain and (b) the level-2 microscopic strain at the critical region for the clustered RVE 
model. 
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Figure 4.29: Contour plot of plastic strain ep for the composite square plate: (a) the macroscopic 
averaged strain and (b) the level-2 microscopic strain at the critical region for the elliptical RVE 
model. 
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Figure 4.31: (a) Finite element model for a part of the composite plate with two circular holes and 
(b) the VCFE model of the microstructural composite RVE. 
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(Level-2 model at A) (Macro model) (Level-2 model at B) 

Figure 4.32: Macroscopic three level evolved mesh for the composite plate with two holes at the 
end of loading. The level-2 regions in the microstructure are shown at the two regions A and B. 
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Figure 4.33: Contour plot of (a) the macroscopic plastic strain e? and (b) level-2 microscopic plastic 
strain OF at the region C of the microstructure 
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particle cracking. VCFEM allows continuous changing element topology due to progressive particle 
cracking with a high level of efficiency and accuracy [23, 28]. This allows modeling large portions 
of the complex microstructure. A conventional displacement based elastic-plastic FEM code exe- 
cutes the macroscopic analysis. Adaptive methods and mesh refinement strategies are developed 
to create a hierarchy of computational sub-domains with varying resolution. Such hierarchy allows 
for differentiation between non-critical and critical regions and help in increasing the efficiency of 
computations through preferential 'zoom in' regions. Coupling between the scales for regions with 
periodic microstructure is accomplished through asymptotic homogenization, while other regions 
of nonuniformity and non-periodicity are modeled by true microstructural VCFEM analysis. 

In the hierarchical model, three distinct levels evolve with progressive deformation. In level- 
0, a piecewise continuous elastic-plastic constitutive law is developed from a numerically created 
database for macroscopic simulations. The model incorporates exact microstructural morphology 
in its development and hence is accurate from a micromechanics point of view. This results in high 
efficiency compared with two-scale analysis by homogenization. Level-1 elements, which manifest 
with imminent damage, use asymptotic homogenization for predicting macroscopic variables as 
well a variables in the microstructural RVE. Simultaneously, element refinement by h-adaptation 
enables zooming in at critical regions of intense deformation. With the rise in local gradients of 
macroscopic variables and microstructural damage, the assumptions of representative volume ele- 
ment in the microstructure no longer hold. This necessitates a shift in macroscopic simulations to 
completely microscopic simulations in these regions. This region is termed as the level-2 where an 
extended portion of the microstructure is directly modeled by VCFEM. The microstructural model 
is directly interfaced with level-0 or level-1 elements and a coupled analysis is performed. 

Several numerical examples are conducted with the multi-level model to examine the effect of 
various microstructural morphologies on the multi-scale response of composite and porous struc- 
tural components. Specifically scale effects, effects of microstructural distribution and shapes, 
and structural geometries, on the mechanical and damage response are investigated. The model 
performs satisfactorily in identifying critical regions and delineating the necessity of true multi- 
scale simulations. In conclusions, the multi-level model developed reserves the potential to be a 
very effective tool in the prediction of structural failure which can be modeled as an aggregate of 
microscopic damage. 
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Chapter 5 

Experimental-Computational 
Investigation Of Damage Evolution 
In Discontinuously Reinforced 
Aluminum Matrix Composite 

5.1    Introduction 

The commercial use of particle-reinforced metal matrix composites in automotive, aerospace and 
other engineering systems has increased in the last few decades due to their potentially superior 
mechanical properties, as well as their ability to reduce life-cycle costs through enhanced thermal 
stability and weight reduction. The property advantages of these materials are, however, often di- 
minished by general degradation of failure properties like ductility and fracture toughness. Various 
experimental and numerical studies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have been conducted to understand 
the influence of morphological factors such as volume fraction, size, shape and spatial distribution 
as well as constituent material and interface properties on the deformation and damage behavior. 
These studies have concluded that failure mechanisms are highly sensitive to local reinforcement 
distribution, morphology, size, interfacial strength etc. 

Traditionally unit cell models [11, 12, 13, 14, 15] based on the finite element analysis have 
been used to predict the onset and growth of evolving damage in composite materials. While these 
models provide valuable insights into the microstructural damage processes, simple morphologies 
idealize actual microstructures for many engineering materials that bear little relationship to the 
actual stereographic features. These deficiencies have been circumvented in [16, 8, 17], where com- 
putational models of discontinuously reinforced materials with random spatial dispersion have been 
considered. Richmond and coworkers [18, 19] have investigated the effect of morphology on damage 
in composite, porous and polycrystalline materials by modeling actual geometries obtained from 
2D micrographs. Using the Voronoi Cell finite element model, Ghosh et. al. [9, 10] have examined 
the effect of various spatial dispersions and particle shape and size on the damage initiation and 
evolution process in ductile matrix composites. 

Many characterization studies with 2-D microstructures e.g. [20, 21, 22, 23] have also been 
conducted to understand the relation between microstructural morphology and damage. Experi- 
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mental research [25, 26, 27, 28, 29] has however pointed to the necessity of examining the full 3D 
characteristics for understanding the damage process. These studies infer that 2-D assessment can 
sometimes be misleading, especially in the presence of spatial clustering. Non-destructive evalua- 
tion methods, e.g. techniques based on ultrasonics e.g. [30], acoustic emission [4] and X-ray based 
computer tomography (CT) [31, 32] have emerged as potential methods for studying 3D damage. 
However many of these systems are thus far not capable of achieving spatial resolutions required to 
accurately capture microscopic particles and damage in the particle reinforced MMC's. Buffiere et. 
al [33] are developing a CT technology to yield tomographic images with a higher spatial resolution. 

This work deals with a combined experimental-computational approach to study the evolution 
of microscopic damage to cause complete material failure in commercial SiC particle reinforced 
aluminum alloys or DRA's. Through a combination of 2D and 3D characterization and analysis 
models, it is intended to understand what aspects of microstructural morphology that are most 
critical for damage nucleation and evolution. Since it is difficult to identify the microcrack growth 
process once a material has failed completely, an interrupted testing technique is designed. Sub- 
sequently, sample microstructures in the severely necked region are microscopically examined in 
3D using a serial sectioning method discussed in [24, 25, 26]. Computer simulated equivalent mi- 
crostructures are tessellated into meshes of 2-D and 3-D Voronoi cells. Various characterization 
functions of geometric parameters are generated and a sensitivity analysis is conducted to explore 
the influence of morphological parameters on damage. 2D characterization functions are compared 
with 3D to evaluate the effectiveness of modeling the 2D micrographs. Modeling of the initia- 
tion and propagation of damage is conducted with Voronoi Cell Finite Element Method (VCFEM) 
[9, 10, 34, 35]. Each Voronoi cell element may consist of a matrix phase, an inclusion phase and 
a crack phase. Damage initiation by particle cracking is assumed to follow a maximum principal 
stress based Rankine criterion. The VCFEM for particle cracking has shown a significant promise 
in modeling large aggregates of heterogeneities. While the appropriateness of 3D analyses is rec- 
ognized for this study, the 3D VCFEM (under development) does not currently have all necessary 
features. Due to enormous computing requirements of conventional 3D FEM models, various stud- 
ies have resorted to simplified manifestations of complex geometries and properties e.g. [7, 41, 15]. 
This study is restricted to 2D in the form of VCFEM analyses of section micrographs. Finally, the 
effect of size and characteristic lengths of representative material element (RME) on the extent of 
damage in the model systems is also investigated. 

5.2    Experiments for Damage Assessment 

5.2.1    Interrupted tests 

The material analyzed in this work is a discretely reinforced commercial aluminum that is fabricated 
by a powder metallurgy process [36]. It consists of extruded commercial X2080 aluminum alloy 
with 15% volume fraction SiC particles. The X2080 matrix has a nominal alloy composition with 
weight percentages of 3.8% Cu, 1.8% Mg and 0.2% Zr, in addition to low impurity contents of Fe 
and Si. The precipitation hardened X2080 aluminum alloy system is naturally aged by heat treating 
for 4 hours at 930°F, followed by cold water quench and aging for 2 days at room temperature. 

An important object in this failure study is to obtain adequate microstructural data that depict 
the growth of damage into a major failure path. In general, it is difficult to identify the domi- 
nant damage mechanisms and also the microcrack growth process, once a material has fractured 
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completely. Thus an interrupted testing technique is designed where the load and deformation are 
halted in the material instability zone, following necking but prior to fracture. The tests assume 
that the major cracks are essentially prominent is this stage, and are helpful in understanding the 
linkage mechanism of microcracks or particle debonds to facilitate growth of the dominant damage. 
To initialize the testing, estimates of the necking and fracture strains are first obtained by observing 
the behavior of a tension test to failure. The uniaxial tension tests are executed on a MTS 810 ma- 
terial system with a HP 7044 X-Y recorder to monitor the loads and strains, and the critical strains 
are measured with a MTS 632.11 strain gauge extensometer. Following the initialization, strain 
controlled interrupted tests are carried out, in which the specimens are loaded to the instability 
region before the load is stopped. 

Figure 5.1a shows a typical tension specimen for the naturally aged material. Data for six 
specimens of this material, viz. tl, t2, t3, t4, t5 and t6 are tabulated in table 1. The specimens 
tl, t2, t4 and t6 are obtained from the outer annulus region of the stock material while t3 and 
t5 are from the central core regions. The initialization of the test to study the entire material 
behavior and estimate the post-instability region is done with specimens tl and t2. The material 
load-displacement curve is plotted in figure 5.1b, from which the necking strain is obtained from 
the peak load value. For the specimen tl, the test is conducted at a strain rate is e = 5xl0_4.sec_1 

and the necking strain and fracture strain are found to be en = 9.15% and e,- = 9.40% respectively. 
The short instability region in tl prompts a reduced strain rate e = 3xl0~4.sec_1 for specimen t2, 
for which cn = 9.05% and et- = 9.20%. 

In table 1, e, en and et- correspond to the strain rate, the necking strain and the interrupted 
strain respectively. The interrupted strain coincides with the fracture strain in the event that 
fracture precedes the load stoppage. This is indicated with F or I in the table. Load interruption is 
only possible for the specimens t3 and t6 due to the extremely short post-instability range of this 
material in comparison with the resolution of the loading mechanism. The necking strains for the 
specimens tl, t2, t4 and t6 are in the range of 9.00% ~ 9.30%, while those for specimens t3 and t5 
are in the 9.80% ~ 10.20% range. This difference is possibly due to gradients created by the heat 
treatment at different locations in the stock material. The core cools slower and more uniformly 
regions near the surface. This results in the more uniform microstructure and larger necking and 
fracture strains for specimens (t3 and t5) located near the core of the stock material. 

5.2.2    Damage examination and microscopic analysis 

To examine the dependence of microstructural damage on the local morphology, serial sectioning 
of sample coupons extracted from the load-interrupted specimens t3 and t6, is invoked. This 
method, discussed in [24, 25, 26], involves gradual removal of material layers to obtain a series 
of scanning electron/optical micrographs, representing sections of a microstructure. It is a very 
effective method for reconstructing 3D microstructures from a series of 2D sections of particulate 
reinforced composites, requiring a resolution of few microns. Prior to sectioning, locations are 
selected in figure 5.1a for cutting out the sample coupons. X-rays and acoustic microscopy with 
a AEROTECH UNIDEX 11 acoustic microscope with a resolution of about 50/J.m are used in 
this process to detect regions that contain major crack paths. Polished surfaces of these extracted 
samples are then examined by a Nikon optical microscope for major damage sites. For the specimen 
t3, shorter cracks passing through 2 ~ 3 particles at most are found. However, for the specimen 
t6, a larger crack passing through 5   ~   6 particles is identified, and is consequently chosen for 
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Figure 5.1: (a) Interrupted uniaxial tensile test specimen for naturally aged material and sample 
coupon for serial sectioning(unit in mm); (b) Load-strain plots for two specimens of naturally aged 
DRA. Dark points indicate where the loading is interrupted or where the specimen is fractured. 
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analysis. Coupons of approximate size 6 mm x 6 mm x 6 mm are subsequently prepared for 
the serial sectioning operation to sequentially expose parallel sections of the microstructure. As 
discussed in [24, 25, 26], parallel layers in a direction perpendicular to the straining direction (see 
figure 5.1a) are removed using a precision dimple grinder. The depth of material removal per step 
is selected such that each particle is sectioned at least once, ensuring that all particles of interest 
are adequately captured in the micrographs. For the DRA considered, the particle size range is 
approximately 3-25 fim, with an average size of ~ 9.2 \im and the standard deviation is 3.891 jim. 
The section to section step size is chosen to be 2 /xm, corresponding to a total traversed thickness 
of 36/im for 18 sections. Two typical micrographs showing damage are depicted in figures 5.2, 
for which the horizontal corresponds to the loading direction. The micrographs are then serially 
stacked using a graphic software [37] to yield 3D microstructures as shown in figure 5.3a. The 
precise 3D location, shape, size and orientation of each particle can be obtained at a fairly high 
resolution by this method. 

5.2.3    Major observations 

The micrographs of serial sections 3 and 5 in figure 5.2, perpendicular to the middle plane of the 
tensile specimen, provide important information on the evolution of the dominant damage path 
in the material. A dominant damage path is clearly seen in the boxed regions. The damage size 
progressively diminishes with increasing sections, indicating the end of the cracked particles. The 
particle area fraction (AF), total number of particles (NP) and total number of cracked particles 
(NCP) for each section micrograph are presented in table 2. Generally speaking, sections with large 
AF and NCP are found to contain the larger cracks. The 3D image by assembHng 2D micrographs 
in figure 5.3a also shows the dominant damage path in the boxed region. 

From the microscopic observation results, it is found that for the naturally aged material, the 
main mode of damage is by particle cracking. Large particles in particle rich regions are more 
susceptible to cracking than those in particle sparse regions. Microcracks in the particle rich areas 
link up to form paths of dominant damage. The linkage and evolution of these larger cracks lead 
to the overall failure of the material. These paths are approximately perpendicular to the tensile 
loading direction. Thus, spatial distribution of particles plays a more important role in damage 
than particle size for this material. 

5.3    Equivalent Microstructure &: Mesh Generation 

The actual 3D geometry of particles, as seen in figure 5.3a, can be quite complex and an exhaustive 
database is required to store all geometric details. To avert this, equivalent microstructures that 
closely approximate the actual morphology but are computationally less demanding, are generated. 
In this process, each particle and an associated crack are replaced by equivalent ellipses (in 2D) or 
ellipsoids (in 3D). This method economizes the image analysis and characterization process by way 
of well known geometric properties. For obtaining equivalent microstructures, digitized image data 
is first transferred into a binary format to distinguish between the particle, matrix and crack phases. 
The Oth (70), 1st (Ix,Iy) and 2nd (Ixx,Iyy) order geometric moments are then computed for each 
particle by adding contributions from each voxel (in 3D) or pixel (in 2D) that lies within the particle 
boundary.  For 2D microstructures the computed moments are equated to the moment formulae 
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Figure 5.2:  Micrographs of different sections of the t6 specimen showing cracked particles; (a) 
section 3, (b) section 5. 

87 



OH-, 

! 163 II 
O.M 

(a) 

ß wm & -m' 
*%£   & «?*>* 

ma 

50|im 

(c) (d) 
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tessellation based on particle morphology and (d) 3D tessellation based on microcrack morphology. 



for ellipses to evaluate the centroidal coordinates (xc, yc), half major and minor axis lengths (a, 6), 
and orientation 8 of the major axis from: 

xc   =   | , »c = | , » = ^(C, + v'c? -~4Cy , 6 = ^|(C, - ^CJ - 4C2) 

r       ,   r J2-f/2 /2 
where C\ = 4 * ( I3:^ yy —^j^) and C2 - $. For 3D microstructures, the centroidal coordinates 

(xc,yc,zc) of the equivalent ellipsoid are first evaluated from the Oth and 1st order moments as: 
Xc = ~h > Vc = ~f~ ) zc = / • The principal directions (or orientations of the three axes) for the 
ellipsoids are obtained from the eigen-values of the 2nd order moments /# (i = 1..3, j = 1..3). The 
major (2a), intermediate (26) and minor (2c) axes of the equivalent ellipsoids are then obtained 
from the principal moments Ii,l2,I3 as: 

a=Jj-(I2 + I3-I1),b=Jj-(h+I3-I2),c=Jj-(h + I2-I3) (5.2) 

A simulated 3D microstructure with particles (grey) and cracks (black) is shown in figure 5.3b. 
The microstructures are then tessellated into a mesh of 2D and 3D Voronoi cells, by surface based 
algorithms detailed in [25, 26]. In figure 5.3c, the mesh of Voronoi cells is created based on the 
morphology of particles, while in figure 5.3d the mesh is due to tessellation based on the geometry 
of particle cracks. Tessellation into a mesh of Voronoi cells plays an important role in developing 
geometric descriptors for quantitative characterization. They represent regions of immediate influ- 
ence for each heterogeneity and also define neighbor of each heterogeneity from individual faces or 
edges of the Voronoi cells. This facilitates easy evaluation of parameters like local area fractions, 
near neighbor and nearest neighbor distances and orientations. 

5.4    Microstructure and Damage Characterization 

The morphology of particles and associated damage or microcracks can be characterized by various 
functions of size, shape, orientation and spatial distribution. A number of these classifier functions 
have been used by the authors and others in [24, 25, 26, 34, 35, 20, 21, 22, 6] to characterize various 
aspects of microstructural morphology. In this section, some of these functions are considered 
for the 3D microstructure and 2D micrographs to investigate the relation between morphological 
characteristics and the path of dominant damage in the material. The specimen t6 with a large 
microcrack is considered for this study. 

In the first exercise, a sensitivity analysis is done with the simulated 3D microstructure in figure 
5.3b to reveal the dependence of damage on microstructural variables. Two damage parameters, 
viz. the number fraction of cracked particles (nf) and the volume fraction of cracked particles (vf) 
are chosen to manifest the damage level in the DRA. Six microstructural parameters are considered, 
viz. (i) particle equivalent size (diameter); (ii) nearest neighbor distance computed as the distance 
between particles that share a common Voronoi cell edge; (iii) local volume fraction measured as 
a ratio of the particle size to that of the associated Voronoi cell; (iv) particle shape or ellipsoid 
aspect ratio; (v) nearest neighbor orientation, measured as the angle between a line joining the 
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centers of particle and its nearest neighbor, and the loading direction; and (vi) particle orientation 
with respect to the loading direction. The cracked particle fractions are plotted as functions of 
these parameters in figure 5.5. A linear interpolation, obtained by a least square fit, yields the 
corresponding overall gradient or slope. 

While both the nf and vf plots coincide for the particle size plot (i), large differences are noted 
for nearest neighbor distances (ii) and aspect ratios (iv). Largest slopes of these plots are observed 
with particle size, nearest neighbor distance and local volume fraction. This infers that the strongest 
influence on particle cracking comes from the size and local spatial distribution. Particle shape has 
a relatively smaller effect on damage initiation. Sensitivity of damage to particle orientation and 
nearest neighbor orientation is found to be minimal for this material. 

The characteristics of particles forming the dominant damage path (within the marked box in 
5.3a) are compared with those for all cracked particles in the histograms of figure 5.6. The dotted 
lines correspond to all cracked particles while the shaded areas are for cracked particles in the 
dominant damage region only. The histograms are with respect to three variables that are found 
to play important roles in the damage process, viz. the particle size, nearest neighbor distance 
and orientation with respect to the loading direction. While the range of sizes for all cracked 
particles is 4 ~ 13/xra, that for the particles forming the dominant damage path is 5.7 ~ ISfim. 
This reveals that larger particles generally contribute to dominant damage path. The plot for 
nearest neighbor clearly exhibits the influence of particle rich areas (clustering or alignment) on 
the preferential growth of damage. The nearest neighbor distance for particles in the dominant 
damage path are in the range 0.4 ~ 3.1 pirn when compared with the range 0.4 ~ 12.3/xm for all 
cracked particles. The histogram of cracked particles as a function of the orientation with respect to 
the loading direction reveals that particles with major axis along the loading direction (0° and 180°) 
are generally susceptible to cracking. This is much more pervasive for particles in the dominant 
damage path, due to the smaller cross-sectional areas normal to loading. In conclusion, particles 
in the dominant damage path generally have larger size, are in particle rich areas, and are oriented 
in loading direction. 

Finally, it is of interest to identify discriminating characteristics of 2D micrographs that may 
be helpful in making dominant damage predictions for the actual 3D microstructures. Two repre- 
sentative micrographs, viz. section 1 which contains a dominant damage and section 14 with- 
out any dominant damage, but only scattered particle cracks are compared with the 3D mi- 
croregion. Four important characterization functions viz. (a) the probability density function 
of particle equivalent size (diameter), (b) the probability density function of the nearest neighbor 
distance, (c) the probability density function of the local area/volume fraction and (d) a trans- 
formation function L(r) of a second order intensity function K(r), are plotted in figure 5.7 for 
2D and 3D micrographs. The second order intensity function K(r) and its transformed functions 
(L(r) = (—i^)2 in 2D, and L(r) = (^-^(r))5 in 3D) capture second order statistics of spatial 
distributions are used as a graphical tool for detecting departures from a homogeneous Poisson 
process [34, 35, 25, 26]. The plot of L{r) vs. r is a 45° straight line for a pure Poisson distribution. 

The plots distinctly reveal a few important features of the micrographs. The particle size 
distribution for the two 2D micrographs are similar and the tails are significantly shorter than 
3D. As is expected, 3D particle sizes are larger than 2D particle section sizes due to sectioning 
along non-principal planes. However the probabilities of both the nearest neighbor distances and 
local area fractions in figures 5.7b and c yield a distinguishing characteristic. The micrograph with 
dominant damage has peaks and valleys, as well as tails that are very similar to that for 3D. The 
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peaks which reflect particle rich regions and the tails which reflect sparse areas are both found to 
be important discriminants. Deviation from the L(r) = r function or the 45° line represents a 
bias towards clustering. The section with the dominant damage has a larger deviation from the 
random distribution in comparison with the section without major cracking, and is closer to the 
3D response. In summary, it may be concluded that when analyzing 2D sections, the liklehood of 
better representation of dominant damage are for those sections that have higher peaks at lower 
near neighbor distances with longer tails and have higher deviation from the Poisson distribution. 
Similar observations have also been made in [5, 1, 38, 29]. 

5.5    Damage Simulation by Voronoi Cell FEM 

Two dimensional plane strain/stress simulations of the microstructural damage evolution is con- 
ducted by the Voronoi cell finite element model (VCFEM) described in [9, 10, 34, 35]. The current 
2D VCFEM only accommodates particle cracking, and hence matrix cracking is ignored in the sim- 
ulations. The simulations are useful in understanding the damage evolution process by a sequence 
of particle cracking. Rectangular 195/xm x 155.018/xm micrographs as shown in figure 5.9a,b are 
analyzed with monotonically increasing strains. Periodicity boundary conditions are imposed by 
requiring edges to remain straight and parallel to the original direction throughout deformation as: 

ux   =   0 (on x = 0) , uy = 0 (on y = 0) , ux = uap (on x - Lx) , uy = D* (on y = Ly) 

Ty   =   0(onx = Q/Lx) , Tx = 0 (on y = 0/Lv) (5.3) 

where uap is an applied displacement and D* is determined from the average force condition 
Jx Txdx = 0 on y = Ly. The reinforcing phase of SiC particles are assumed to be brittle and 
is modeled with the linear elastic properties: Young's modulus E = 427 GPa, Poisson's ratio v 
= 0.17. The aluminum matrix material is assumed to be ductile and is modeled by small defor- 
mation isotropic hardening J2 elasto-plasticity theory with properties: Young's modulus E = 72 
GPa, Poisson's ratio v = 0.33 and the post yield elastic-plastic behavior is obtained from [39] as 
shown in figure 5.8. Microstructural damage by particle cracking is assumed to be governed by 
a maximum principal stress or Rankine criterion. In this criterion, a crack is initiated when the 
maximum principal stress in tension exceeds a critical fracture stress aCT at a point. The crack is 
oriented at right angle to the principal stress direction. The critical stress a„ is also influenced by 
the particle size due to the existence of microcracks. To account for the size effect in acr, a Weibull 
distribution based criterion is used, where the probability of particle fracture Pj(A, a) is related to 
the particle volume/area v and the maximum principal stress a/ as: 

Pf(v, o-j) = 1 - exp[-v(^)m] (5.4) 

where a0 and m are two material parameters in the Weibull distribution that are calibrated from 
experiments. 
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5.5.1    Calibration of Weibull parameters a0 and m 

In the two parameter Weibull model, the fraction of fractured particles may be obtained (see 
[41, 42, 26]) from a known probability distribution of particle volumes p(v), as: 

P(v) = /      p(v) pfaafidv « $>(».■) (i - **r>[-f(-£T\) M- ($■$) 

where p(v{) is the probability density distribution of particle volume/area V{. The entire area is 
divided into N intervals such that At;,- = V{ - «,-_i, a\ is the average particle maximum principal 
stress for particles with size in the range of [u,-_i, V{] and VQ is a reference area taken to be the average 
area. The fraction of cracked particles p is readily obtained from the experimental micrographs. 
Again, the section micrographs 2, 8 and 14 are used to calibrate the Weibull parameters. The 
fractions of cracked particles and the average particle area for these three sections are 31.78%, 
24.76%, 28.57% and 53.43, 48.91 and 52.67 p,m2 respectively. The maximum principal stress u\ for 
each particle is obtained from VCFEM simulation prior to the onset of particle cracking at a true 
strain of e = 8.88%. From the experimental observations it is assumed that no major damage has 
initiated at this strain. The Weibull parameter m is assumed to take integer values between 1 and 
8 following [42, 26] and the corresponding values of a0 are given in table 3. 

The Weibull parameters are also calibrated using a 3D ABAQUS model simulation of a cubic 
unit cell with a single, 15% volume fraction, spherical particle as described in [26]. The lxlxl unit 
cell model has a particle of radius R = 0.66. A modified form of equation 5.5 is used to account 
for the shape variability of the particles as 

famax     t*max 
p(a,v)= /        p(a)p(v) Pf(v,(Ti)dv (5.6) 

where a corresponds to the particle aspect ratio. The particle size and shape distribution functions 
p(v) and p{a) are calculated from the computer simulated representation of the actual 3D mi- 
crostructure shown in figure 5.3. This average particle volume and the fraction of cracked particle 
are directly computed from figure 5.3 as v =642.0//m3 and p = 45.48%. The average particle stress 
at a macroscopic strain e = 8.88% is obtained from the ABAQUS simulation as ap = 862.60 MPa. 
Results of calibration with and without shape effects are documented in table 3. It is found that the 
best agreement in <7o for all 2D sections and 3D is obtained for m between 4 and 5. Consequently 
the parameter is chosen to be m = 4.2. The corresponding value of a0 for section 2 is 3.04 GPa, for 
section 8 is 3.19 GPa, for section 14 is 2.79 GPa and the average of these sections is a0 = S.OlGPa. 

Results of VCFEM analysis of the simulated micrographs of sections 1,3,5 and 9 are provided 
in table 4. The number of cracked particles at a macroscopic strain of 8.88% by VCFEM are 
compared with experimental results. While the general agreement is quite good, it is seen that the 
concurrence is particularly favorable when the simulation is conducted with a a0 that is obtained 
from a section that is near to the one being analyzed. For example, the results of sections 1 and 
3 are very good when a0 = 3.01 GPa, which is obtained from section 2. This concurrence may 
be attributed to the similarity in the distribution of heterogeneities in neighboring sections, and 
suggests that spatial distribution has a strong effect on the Weibull parameters. 
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Microscopic Damage Analysis 

Various results for section 1 which contain a dominant damage path are generated by VCFEM 
simulation and compared with experimental observations in this section. The macroscopic stress- 
strain plot for plane strain and plane stress assumptions are compared with experimental results in 
figure 5.8a. The overall yield strength is better predicted by the plane stress model. However, the 
post yield behavior with plane strain conditions is much closer to the experimental results. The 
initial higher yield strength is expected with plane strain due to the plastic constraint caused by 
the €2 = 0 condition. A shifted stress-strain plot (modified plane strain VCFEM result in figure 
5.8a) where the stresses are reduced by the initial difference in yield stress shows a very good 
match between experiments and simulation. Thus plane strain assumptions are used in subsequent 
computations. Figure 5.8b is intended to predict the onset of plastic instability by the model and 
compare it with actual fracture observed in the experiments. The use of the Considere criterion 
to predict the onset of plastic instability has been suggested by Llorca [2, 41] in the absence of 
dilatational strain associated with reinforcement fracture. In this criterion, the average stress ä is 
related to the strain hardening rate ^ as 

-da .     . 
° = Te (5-7) 

The strain derived from this relation corresponds to the lower bound of the tensile ductility since 
it controls the composite load bearing capacity. Three sets of curves are plotted in the figure 5.8b 
corresponding to the matrix material, the VCFEM results in plane strain and the experimental 
results. It is seen that the Considere criterion (junction of the two curves) predicts the experimental 
point corresponding to the onset of fracture rather well. Additionally the 2D prediction of the plane 
strain simulation is also quite good and can be used with reasonable confidence. 

Microstructural results of the simulation are compared with experiments in figure 5.9. The 
computed micrograph with evolved damage for section 1 is compared with the experimental micro- 
graph at 8.88% strain in figure 5.9a and b. The damaged particles are shown with the contained 
crack. Most damaged particles in the simulation coincide with the experimental results, with the 
box indicating the dominant damage path. The damage path is approximately perpendicular to the 
tensile loading direction. Figure 5.9b also shows the contour plot of effective plastic strain in the 
ductile matrix and indicates the path of damage linkage. The plastic strain is higher and localized 
between cracked particles and this is expected to cause matrix cracking. The number fraction of 
cracked particles in different size ranges are plotted in figure 5.9c. Very good agreement is seen 
between simulation and experimental results. Figure 5.9d is a contour plot of the particle fracture 
probability at 8.88% strain. The black shade corresponds to the highest probability and fractured 
particles are illustrated in white with a crack. Similar plots (not shown) at earlier stages of defor- 
mation show that several particles with higher probability at the smaller strain have cracked with 
deformation. The number fraction of cracked particles as a function of straining are plotted for 
sections 1, 5 and 9 together with the experimental observation in figure 5.10. At lower strains the 
number fraction of of cracked particles for sections 1 and 5 with particle rich regions are higher than 
that for section 9. This is due to higher stress concentrations particle rich areas that are enough to 
fracture some particles even at low strains. With increasing strains more particles start to crack in 
the section 9 and exceeds that for section 5 which has less particles in the clustered regions. The 
2D simulations however exhibit less cracked particles than that in the actual 3D microstructure. 
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Figure 5.8: (a) Experimental micrographs, (b) VCFEM simulated micrograph showing damage and 
contour plot of effective plastic strain at 8.88% strain in section 1, (c) histogram of number fraction 
of cracked particles as a function of particle size by Weibull based probabilistic criterion, and (d) 
contour plot of particle fracture probability of section 1 at 8.88% strain. 
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Figure 5.9: Number fraction of cracked particles as a function of straining. 

5.6    Characteristic Size of Microstructures 

The influence region of local morphology on the mechanical response is characterized by a mi- 
crostructural representative material element (RME) that is critical in delineating length scales. 
The RME depicts a region which is assumed to be representative of the entire microstructure. 
Functions that distinguish between variations in stress/strain distributions for local disturbances 
in microstructural patterns can provide important insight on microstructure-property relations. 
Marked correlation functions, discussed in [22, 10, 35, 26] for multivariate characterization of pat- 
terns, are evaluated to characterize length scales or RME size in the presence of damage. A mark 
may be identified with an appropriate microstructural variables, e.g. in this case a variable that 
related to quantification of damage. The marked correlation function for a heterogeneous domain 
W of volume V containing N heterogeneities is mathematically expressed as [22, 23, 10]: 

M(r) = 
9(r) 

1   V N   k> 
JM = ^EE m2N2 m 

»=i fc=i 

. .        ,     . . 1    dK(r) . 
,-ro*(r) and g(r) = ^2    ^ (5.8) 

where K{r) is the second order intensity function defined in [34, 35], g(r) is the pair distribution 
function and H(r) is the mark intensity function. The H(r) function reduces to the K(r) function if 
all heterogeneities have the same mark. A mark associated with the ith heterogeneity is denoted as 
TO;, k* is the number of heterogeneities which have their centers within a sphere of radius r around 
ith heterogeneity, for which the mark is TO^, and TO is the mean of all marks. By definition M(r) 
establishes a relation between the location and associated variables for heterogeneities. Two marks 
are considered in this study. The first corresponds to particle cracks and are designated as m^ — 1 
for a cracked particle and TO,- = 2 for an intact particle. The second corresponds to the probability 
of particle fracture, which signifies the propensity to advance the microstructural damage state. 
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Figure 5.10: Simulations showing effective plastic strain(%) and cracked particles in three different 
subsets of the entire micrograph of section 1, (a) RME 0 with dimension 195/jm x 155//m (b) RME 
1 with dimension 150fim x 155/im and (c) RME 2 with dimension 116/xrna;115/x7n. 

The M{r) function statistically stabilizes at near-unit values at a distance r,n<er at which the local 
morphology ceases to have any significant influence on evolving variable. Values of M(r) > 1 show 
positive correlation, while M{r) < 1 indicates repulsion between marks. This distance r,nter is an 
indication of the physical range of interaction and is significant in making decisions about length 
scales and the RME size. 

The marked correlation functions corresponding to cracked particles and probability of fracture, 
are plotted in figures ??a and b from the simulation of the entire micrograph of section 1 (termed 
as RME 0) with dimensions 195/xm x 155/um. The dotted line corresponds to the unit M{r) 
for uniform distribution of spherical heterogeneities with identical marks. Contour plots of the 
equivalent plastic strain in the simulated micrograph with cracked particles are shown in figure 
5.11a. The particle area fraction for this micrograph 18.37% and the total number of particles 
and cracked particles are 105 and 34 respectively. The plots are made with only upto 40% of 
the entire micrograph, or 80/im to avoid boundary effects in M(r). The M(r) functions in both 
figures approximately stabilize at near-unit values at a distance r,-nter of about 60 fim. At this 
distance, the local morphology is expected to have a significantly reduced influence on the evolving 
variables. The slower attenuation of M(r) for particle fracture at shorter range indicates the strong 
effect of the local morphology on damage evolution. Next, a smaller region (RME 1) is selected 
for damage simulation corresponding to the stabilized region in the M(r) plots. Since the stable 
region is 60fj,m, the dimension of the micrograph is chosen to be 150/xro x 155/im, incorporating 
the scaling factor, i.e. ^ = 159. This is shown with the box in figure 5.11a. Again the contour 
plots of plastic strain with cracked particles by VCFEM simulation are shown in figure 5.11b. The 
dominant crack behavior is quite similar to that for RME 0, even though there is some difference 
near the boundary. Also the plastic strain contours and limiting values are similar. The particle 
area fraction for RME 1 is 18.13% with the total number of particles and cracked particles at 84 
and 28 respectively. The M(r) plots in figure ??c and d show that the functions may still be 
assumed to stabilize at around 60/xm. A smaller subset (RME 2), with dimensions 116/xma;115/xm 
is next simulated and the plastic strain is depicted in figure 5.11c.  Significantly different plastic 
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strains and cracking pattern is observed for this microstructure. The particle area fraction for 
this micrograph is 18.68% with a total of 51 particles of which 18 are cracked. The plots of M{r) 
function do not stabilize in the domain of the simulation window. Through this analysis the size 
effect of microstructure, needed for adequate representation and analysis in the presence of evolving 
damage is demonstrated. 

5.7    Conclusions 

In this work, a combination of experimental and computational methods are utilized to characterize 
and understand the evolution of microscopic damage that cause failure in naturally aged commercial 
SiC particle reinforced DRA's. The main mode of damage for the naturally aged material is found 
to be particle cracking. Larger particles in particle rich regions are more susceptible to cracking 
than those in particle sparse regions. Spatial distribution of particles plays a more important role 
in damage than particle size for this material. A sensitivity analysis with respect to microstructural 
parameters infers that the strongest influence on particle cracking comes from the size and local 
spatial distribution. Particle shape, orientation and nearest neighbor orientation have relatively 
smaller effect on damage initiation. Histograms of particles forming the dominant damage path in 
comparison with all cracked particles reveal that larger particles oriented in loading direction and in 
relatively rich areas are more susceptible to contribute to a dominant crack in the microstructure. 
In an attempt to identify discriminating characteristics of 2D micrographs that may be of helpful 
in making dominant damage predictions for the actual 3D microstructures, probability density 
functions of particle size nearest neighbor distance, and second order intensity function K(r) of 
spatial distribution are plotted. Better representation of damage is possible with those sections 
that have higher peaks at lower near neighbor distances and longer tails, as well as have propensity 
towards clustering. 

Next the two dimensional Voronoi cell finite element model is used to simulate microstructural 
damage evolution in computer generated equivalent micrographs. Both macroscopic and micro- 
scopic variables obtained by the VCFEM simulation are compared with experimental observations. 
The macroscopic stress-strain plot for the plane strain analysis is found to yield quite good match 
with experiments if the difference in the initial yield strength due to plastic constraint is subtracted. 
Prediction of the onset of plastic instability by the Considere criterion is also found to be in reason- 
ably good agreement with the experimental results. For the microstructural results with number 
of cracked particles in different size ranges, the Weibull model is found to give better concurrence 
with experiments. A plot of the number fraction of cracked particles as a function of straining 
shows that at lower strains sections with particle rich regions damage rapidly, but the rate slows 
down with additional deformation. Finally, the marked correlation functions are evaluated to char- 
acterize length scales and representative material element size in the presence of damage. Particle 
cracks and the probability of particle fracture are chosen to be the marks. The study reveals that a 
significantly large portion of the microstructure should be analyzed for reasonable accuracy in the 
presence of damage. The correlation functions do not stabilize below a certain length scales and 
this keeps growing with increased damage. In summary, various important characteristics of grow- 
ing damage are investigated in this work to understand the role of microstructure in the material 
failure process. 
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Figure 5.11: Marked correlation function as a function of radial distance; (a) cracked particles as 
marks and (b) probability of cracking as makr for RME 0; (c) cracked particles as marks and (d) 
probability of cracking as makr for RME 1; (e) cracked particles as marks and (f) probability of 
cracking as makr for RME 2. 
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